Math, asked by priyanshbhurrak1097, 1 year ago

prove that it's important and get 15 points​

Attachments:

Answers

Answered by Anonymous
12

\bf{\Huge{\boxed{\rm{\blue{ANSWER\::}}}}}

\bf{Given}\begin{cases}\rm{AB\:=\:AC}\\\\ \rm{AD\:=\:AB}\end{cases}}

\bf{\Large{\underline{\bf{To\:prove\::}}}}

\rm{\underbrace{\rm{\angle BCD\:=\:90 \degree}}}

\bf{\Large{\underline{\tt{\green{Proof\::}}}}}

\bf{\large{In\:\triangle ABC,}}

\rm{AB\:=\:AC\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:[Given]}

\rm{\angle ACB\:=\:\angle ABC\:\:\:\:\:\:\:\:\:\:\:\:\:\:[Angle\:opposite\:\&\:sides\:are\:equal]}

&

\bf{\large{In\:\triangle ACD,}}

\rm{AC\:=\:AD\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:[Given]}

\rm{\angle ADC\:=\:\angle ACD\:\:\:\:\:\:\:\:\:\:\:\:\:\:[Angle\:opposite\:\&\:sides\:are\:equal]}

___________________________________________________

\bf{\large{In\:\triangle BCD,}}

\rm{\angle ABC\:+\:\angle BCD\:+\:\angle BCD\:=\:180\:\:\:\:\:\:\:\:\:\:\:[Property\:of\:\triangle]}

\rm{\angle ACB\:+\:\angle BCD\:+\:\angle ACD\:=\:180\:\:\:\:\:\:\:\:\:\:\:[From\:above\:both\:angle]}

\rm{(\angle ACB\:+\:\angle ACD)\:+\:\angle BCD\:=\:180}

\rm{\angle BCD\:+\:\angle BCD\:=\:180}

\rm{2\angle BCD\:=\:180}

\rm{\angle BCD\:=\:\cancel{\frac{180}{2} }}

\rm{\pink{\angle BCD\:=\:90 \degree}}

Hence,

∠BCD is a right angled Δ.                                [Proved]

Answered by EliteSoul
14

Answer:

{\boxed{\bf\green{Answer\::}}}

Step-by-step explanation:

\bf{Given}\begin{cases}\text{AB = AC}\\\text{AD = AB}\\\sf{\angle BCD\: =90\degree \: \: [To\:prove]}\end{cases}

\tt In\: \: \:  \triangle \: ABC, \\\sf AB = AC \\ \therefore\tt \angle ACB =\angle ABC

___________________________

\because\tt AD = AB \\\therefore\tt AC = AD \\\therefore\sf \angle ADC =\angle ACD

\sf We\:know\:that, \\ \sf Sum\:of\:3\:angles\:of\:triangle=180\degree

____________________________

\tt In\: \: \: \triangle BCD, \\\rightarrow\tt \angle DBC + \angle BCD +\angle BDC = 180\degree \\\rightarrow\tt \angle ABC + \angle BCD +\angle ADC =180\degree\\\rightarrow\tt \angle ACB +\angle BCD + \angle ACD =180\degree \\\rightarrow\tt (\angle ACB +\angle ACD) + \angle BCD =180\degree \\\rightarrow\tt \angle BCD +\angle BCD = 180\degree \\\rightarrow\tt 2(\angle BCD) =180\degree \\\rightarrow\tt \angle BCD =\frac{180\degree}{2}\\\rightarrow\tt \angle BCD =90\degree

\therefore\bold{\underline{\angle BCD \:is \:a\:right\:angle \: \: \: \: [Proved]}}

Similar questions