Prove that:(its urgent plz help someone who's intelligent enough !!)
Answers
Answered by
1
sin-1(x) + sin-1(y) =sin-1((x*sqrt(1-y²) + y*sqrt(1-x²))
sin-1(4/5) + sin-1(5/13) =sin-1((4/5*sqrt(1-25/169) + 5/13*sqrt(1-16/25))
sin-1((4/5*sqrt(144/169) + 5/13*sqrt(9/25))
sin-1((4/5)*(12/13) + (5/13)*3/5))
sin-1((48/65) + 15/65))
sin-1(63/65)
sin-1(63/65) + sin-1(16/65) =sin-1((63/65*sqrt(1-256/4225) + 16/65*sqrt(1-3969/4225))
sin-1((63/65*sqrt(3969/4225) + 16/65*sqrt(256/4225))
sin-1((63/65)*(63/65) + (16/65)*16/65))
sin-1(65²/65²)
sin-1(1) = π/2
sin-1(4/5) + sin-1(5/13) =sin-1((4/5*sqrt(1-25/169) + 5/13*sqrt(1-16/25))
sin-1((4/5*sqrt(144/169) + 5/13*sqrt(9/25))
sin-1((4/5)*(12/13) + (5/13)*3/5))
sin-1((48/65) + 15/65))
sin-1(63/65)
sin-1(63/65) + sin-1(16/65) =sin-1((63/65*sqrt(1-256/4225) + 16/65*sqrt(1-3969/4225))
sin-1((63/65*sqrt(3969/4225) + 16/65*sqrt(256/4225))
sin-1((63/65)*(63/65) + (16/65)*16/65))
sin-1(65²/65²)
sin-1(1) = π/2
vivek2001:
haahaaa u r pravin undoubtedly.........yeh to isliye likha tha ki question catchy lage
Answered by
1
Let Sin⁻¹ 4/5 = A => Sin A = 4/5 => Cos A = √(1 - 4²/5²) = 3/5
Let Sin⁻¹ 5/13 = B => Sin B = 5/13 => Cos B = 12/13
Let Sin⁻¹ 16/65 = C => Sin C = 16/65 => Cos C = √(1 - 16²/65²) = 63/65
LHS = A + B + C.
Let us find:
Sin (B+C) = Sin B Cos C + Cos B Sin C
= 5/13 * 63/65 + 12/13 * 16/65 = 0.6
thus Cos (B+C) = √(1 - 0.6²) = 0.8
Finding Sine of LHS :
Sin [A + (B+C)] = Sin A Cos(B+C) + Cos A Sin (B+C)
= 4/5 * 0.8 + 3/5 * 0.6 = 1
Hence, A+B+C = π/2
Let Sin⁻¹ 5/13 = B => Sin B = 5/13 => Cos B = 12/13
Let Sin⁻¹ 16/65 = C => Sin C = 16/65 => Cos C = √(1 - 16²/65²) = 63/65
LHS = A + B + C.
Let us find:
Sin (B+C) = Sin B Cos C + Cos B Sin C
= 5/13 * 63/65 + 12/13 * 16/65 = 0.6
thus Cos (B+C) = √(1 - 0.6²) = 0.8
Finding Sine of LHS :
Sin [A + (B+C)] = Sin A Cos(B+C) + Cos A Sin (B+C)
= 4/5 * 0.8 + 3/5 * 0.6 = 1
Hence, A+B+C = π/2
Similar questions