Prove that ko secant squared theta + secant squared theta equal to cos square theta second squared theta
Answers
Answered by
0
Answer:
{sec}^{2} \theta + {cosec}^{2} \theta = {sec}^{2} \theta. {cosec}^{2} \thetasec
2
θ+cosec
2
θ=sec
2
θ.cosec
2
θ
L.H.S.
\begin{gathered}= \frac{1}{ {cos}^{2} \theta} + \frac{1}{ {sin}^{2} \theta} \\ = \frac{ {sin}^{2} \theta \: + {cos}^{2} \theta}{ {cos}^{2} \theta. {sin}^{2} \theta } \\ = \frac{1}{ {cos}^{2} \theta. {sin}^{2} \theta } \\ = {sec}^{2} \theta. {cosec}^{2} \theta\end{gathered}
=
cos
2
θ
1
+
sin
2
θ
1
=
cos
2
θ.sin
2
θ
sin
2
θ+cos
2
θ
=
cos
2
θ.sin
2
θ
1
=sec
2
θ.cosec
2
θ
= R.H.S.
Hence, proved
Similar questions