PROVE THAT LHS = RHS
Attachments:
Answers
Answered by
0
(tan^3 X/(1 + tan^2 X)) + (cot^3 X/(1 + cot^2 X))
= (tan^3 X/sec^2 X) + (cot^3 X/cosec^2 X)
= (sin^3 X/cos X) + (cos^3 X/sin X)
= (1/(sin X * cos X))*(sin^4 X + cos^4 X)
= (1/(sin X * cos X))*((sin^2 X)^2 + (cos^2 X)^2)
[Using (a^2 + b^2) = (a + b)^2 - 2ab]
= (1/(sin X * cos X))*((sin^2 X + cos^2 X)^2 - 2*sin^2 X*cos^2 X)
= (1/(sin X * cos X))*(1 - 2*sin^2 X*cos^2 X)
[since sin^2 X + cos^2 X = 1]
= 1/(sin X * cos X) - (2*sin^2 X*cos^2 X)/(sin X * cos X)
= cosec X * sec X - 2 * sin X * cos X
Hence Proved.
= (tan^3 X/sec^2 X) + (cot^3 X/cosec^2 X)
= (sin^3 X/cos X) + (cos^3 X/sin X)
= (1/(sin X * cos X))*(sin^4 X + cos^4 X)
= (1/(sin X * cos X))*((sin^2 X)^2 + (cos^2 X)^2)
[Using (a^2 + b^2) = (a + b)^2 - 2ab]
= (1/(sin X * cos X))*((sin^2 X + cos^2 X)^2 - 2*sin^2 X*cos^2 X)
= (1/(sin X * cos X))*(1 - 2*sin^2 X*cos^2 X)
[since sin^2 X + cos^2 X = 1]
= 1/(sin X * cos X) - (2*sin^2 X*cos^2 X)/(sin X * cos X)
= cosec X * sec X - 2 * sin X * cos X
Hence Proved.
Similar questions
Computer Science,
6 months ago
English,
6 months ago
English,
1 year ago
Music,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago