Math, asked by teibok1993, 11 months ago

prove that lhs =rhs for cos theta by 1+sin theta = 1- sin theta by cos theta

Answers

Answered by Anonymous
27

Answer:

Given :

\displaystyle{\dfrac{\cos\theta}{1+\sin\theta}=\dfrac{1-\sin\theta}{\cos\theta}}

\display \text{L.H.S. $ =\dfrac{\cos\theta}{1+\sin\theta} $ }\\\\\\\display \text{Multiply and divide by $ \cos\theta $ }\\\\\display \text{L.H.S. $ =\dfrac{\cos\theta}{1+\sin\theta}\times\dfrac{\cos\theta}{\cos\theta} $ }\\\\\\\display \text{$ \implies\dfrac{\cos^2\theta}{(1+\sin\theta)\cos\theta}$}\\\\\\\display \text{We can write $\cos^2\theta=1-\sin^2\theta$}\\\\\display \text{$\implies\dfrac{1-\sin^2\theta}{(1+\sin\theta)\cos\theta}$}

\display \text{$\implies\dfrac{1^2-\sin^2\theta}{(1+\sin\theta)\cos\theta}$}\\\\\\\display \text{Using identity $x^2-y^2=(x+y)(x-y)$}\\\\\display \text{$\implies\dfrac{(1+\sin\theta)(1-\sin\theta)}{(1+\sin\theta)\cos\theta}$}\\\\\\\display \text{$(1+\sin\theta)$ cancel out}\\\\\display \text{$\implies\dfrac{1-\sin\theta}{\cos\theta}$}\\\\\\\display \text{L.H.S. = R.H.S.}\\\\\large \text{Hence Proved .}

Similar questions