Math, asked by hhbbgghhg, 3 months ago

Prove that LHS =RHS
plz qnswer fast with proper steps and explanation....​

Attachments:

Answers

Answered by minalrane
1

Answer:

ans is in ans ..hope it will help

Attachments:
Answered by SachinGupta01
12

\boxed{  \red{\sf \: Let's  \: Prove  \:  \: \sqrt{ \dfrac{1 +  \sin{A }}{1 -  \sin{A}} }  \:  =  \:  \sec{A} \:  +  \:  \tan{A}}}

\bf \:  \purple{Let \:  us  \: firstly  \: solve \:  (LHS) \:  Left  \: hand  \: side. }

\sqrt{ \dfrac{1 +  \sin{A }}{1 -  \sin{A}} }

\sf \:   \dfrac{ \sqrt{1 +  \sin{A }} }{ \sqrt{ 1 -  \sin{A}}}   \:  \times  \:    \dfrac{ \sqrt{1 +  \sin{A }} }{ \sqrt{1  +  \sin{A}} }

\boxed{\sf \red{(a  - b) \: (a+b)  \:  =  \: a ^{2}  - b ^{2}  }}

\sf \:   \dfrac{ \sqrt{(1 +  \sin{A}) ^{2}  } }{ \sqrt{ (1)^{2} - ( \sin {^2}A)  }}   \:

\sf \: By  \: cancelling \:  root \:  with  \: square \:  in  \: numerater.

\sf \: \dfrac{1 +  \sin{A} }{  \sqrt{(1) ^{2}  -  \sin^{2}A  }  }

\sf \: We \:  know  \: that ,  \: (1)^{2}  \:  =  \: 1

\sf \:  \dfrac{1 +  \sin{} }{ \sqrt{1 -  \sin^{2} A  } }

\sf \:  \dfrac{1 +  \sin{} }{ \sqrt{ \cos^{2} A  } }

\sf \: By  \: cancelling \:  root \:  with  \: square \:  in  \: numerater.

\sf \:  \dfrac{1 +  \sin{A} }{ \cos{A} }

\bf \: \purple{ Now,  \: We \:  will  \: solve \:  (RHS)  \: Right \:  Hand  \: side : }

\sf \:   \sec{A} \:  +  \:  \tan{A}

\sf \dfrac{1}{ \cos{A}}  \:  +  \:  \dfrac{ \sin{A} }{\cos{A}}

\sf \:  \dfrac{1 +  \sin{A} }{ \cos{A} }

\begin{gathered} \\ \boxed{\bf\:L.H.S.= \:R.H.S.}\\\end{gathered}

\begin{gathered} \\ \bf{ \green{\underbrace{\red{Hence \: \: Proved}}}}\\\end{gathered}

\begin{gathered}\dag\: \green{\textsf{\textbf{ \purple{More to know : }}}} \\ \end{gathered}

\sf \sin^{2} {A} \:  +  \:  \cos^{2} {A} \:  =  \: 1

\sf \: 1 -  \cos {^{2} {A}} \:  =  \:  \sin{^{2} {A}}

\sf \: 1 -   \sin{^{2} {A}} \:  =  \:  \ \cos {^{2} {A}}

Similar questions