Math, asked by mohit6150, 1 year ago

prove that lim x → 0 ( 1 + x ) 1/ x = e​

Answers

Answered by jitumahi435
4

We have to prove that :  \lim_{x \to 0} (1+x)^{\dfrac{1}{x}} = e.

L.H.S. = \lim_{x \to 0} (1+x)^{\dfrac{1}{x}}

Using the binomial expansion of (1+x)^{\dfrac{1}{x}}

= \lim_{x \to 0} (1+\dfrac{1}{x}+\dfrac{\dfrac{1}{x}(\dfrac{1}{x}-1) }{2!} ).x^2+\dfrac{\dfrac{1}{x}(\dfrac{1}{x}-1) (\dfrac{1}{x}-2) }{2!} ).x^3+ ..... + ∞)

Put x = 0, we get

= 1 + 1 + \dfrac{1}{2!} + \dfrac{1}{3!}

= e [ ∵ e^x = 1 + x + \dfrac{x^2}{2!} + \dfrac{x^3}{3!} + ..... ]

= R.H.S., proved.

Thus, \lim_{x \to 0} (1+x)^{\dfrac{1}{x}} = e, proved.

Similar questions