Math, asked by saiswastiparija1271, 10 months ago

Prove that limit x tends to 0 sine inverse x upon x is equal to 1

Answers

Answered by Anonymous
36

{\underline{\sf{Question}}}

Prove that \sf\lim _{x \to0}\:\dfrac{\sin{}^{-1}x}{x}=1

{\underline{\sf{Solution}}}

\sf\lim _{x \to0}\:\dfrac{\sin{}^{-1}x}{x}=1

Since 0/0 is of indeterminate form.

Then ,apply L'Hospital's Rule.

\sf\lim _{x \to0}\dfrac{\frac{d(\sin{}^{-1}x)}{dx}}{\frac{dx }{dx}}

\sf\lim _{x \to0}\dfrac{\frac{1}{\sqrt{1-x^2}}}{1}

\sf\lim _{x \to0}\dfrac{1}{\sqrt{1-x^2}}

\sf=\dfrac{1}{\sqrt{1-0}}

\sf=1

Therefore,

\sf\lim _{x \to0}\:\dfrac{\sin{}^{-1}x}{x}=1

Hence Proved

_____________________

About L'HOSPITAL'S Rule :

If f(a)=g(a)= 0 , then

 \sf \lim _{x \to \: a} \:  \frac{f(x)}{g(x)}  =  \sf \lim _{x \to \: a} \frac{f'(x)}{g'(x)}

Similar questions