Physics, asked by rohitguptaji420, 4 months ago

prove that linear acceleration = angular acceleration * distance of the particles from axis​

Answers

Answered by shadowsabers03
7

Consider a particle moving along the circumference of a circle of radius \sf{r,} so \sf{r} is the distance of the particle from the axis.

When the particle traverses an angular displacement of \theta (in radian), then the distance travelled by the particle \sf{s} is given by,

\sf{\longrightarrow \dfrac{s}{2\pi r}=\dfrac{\theta}{2\pi}}

\sf{\longrightarrow s=r\theta}

Differentiating wrt time \sf{t,}

\sf{\longrightarrow\dfrac{ds}{dt}=\dfrac{d}{dt}[r\theta]}

As \sf{r} is constant wrt \sf{t,}

\sf{\longrightarrow\dfrac{ds}{dt}=r\cdot\dfrac{d\theta}{dt}}

\sf{\longrightarrow v=r\omega}

where \sf{v} is linear velocity and \omega is angular velocity.

Again differentiating wrt time \sf{t,}

\sf{\longrightarrow\dfrac{dv}{dt}=\dfrac{d}{dt}[r\omega]}

\sf{\longrightarrow\dfrac{dv}{dt}=r\cdot\dfrac{d\omega}{dt}}

\sf{\longrightarrow\underline{\underline{a=r\alpha}}}

where \sf{a} is linear acceleration and \sf{\alpha} is angular acceleration.

Hence the Proof!

Similar questions