Prove that ln(cscu−cotu)=−ln(cscu+cotu)
Answers
Given : ln(cscu−cotu)=−ln(cscu+cotu)
To Find : Prove
Solution:
ln(cscu−cotu)=−ln(cscu+cotu)
LHS = ln(cscu−cotu)
= ln(1/Sinu − cosu/sinu)
= ln ( 1 - cosu)/(sin u))
multiply numerator and denominator by 1 + cosu inside ln
= ln ( 1 - cosu)(1 + cosu)/(1 + Cosu)(sin u))
= ln ( 1 - cos²u)/(1 + Cosu)(sin u))
= ln ( sin²u)/(1 + Cosu)(sin u))
= ln ( sinu)/(1 + Cosu))
= ln ( 1/(1/Sinu + Cosu/Sinu)
= ln( 1/(cscu + cotu))
= ln ((cscu + cot u)⁻¹)
= - ln(cscu+cotu)
= RHS
Learn More:
Prove the following trigonometric identities: sinA/secA+tanA-1+cotA ...
brainly.in/question/15922912
1-sinA / 1-secA - 1+sinA/1+secA6= 2cotA (cosA- cosecA) - Brainly.in
brainly.in/question/11616813
SOLUTION
TO PROVE
FORMULA TO BE IMPLEMENTED
EVALUATION
Here we have
Taking logarithm in both sides we get
∴
Hence proved
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
1. if 2log x base y=6,then the relation between x and y
https://brainly.in/question/27199002
2. If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)
https://brainly.in/question/24081206