Math, asked by udayk55391, 5 months ago

Prove that ln(cscu−cotu)=−ln(cscu+cotu)

Answers

Answered by amitnrw
7

Given : ln(cscu−cotu)=−ln(cscu+cotu)

To Find : Prove

Solution:

ln(cscu−cotu)=−ln(cscu+cotu)

LHS = ln(cscu−cotu)

= ln(1/Sinu − cosu/sinu)

= ln ( 1 - cosu)/(sin u))

multiply numerator and denominator by 1 + cosu   inside ln

= ln ( 1 - cosu)(1 + cosu)/(1 + Cosu)(sin u))

=  ln ( 1 - cos²u)/(1 + Cosu)(sin u))

=  ln ( sin²u)/(1 + Cosu)(sin u))

= ln ( sinu)/(1 + Cosu))

= ln ( 1/(1/Sinu + Cosu/Sinu)

= ln( 1/(cscu + cotu))

= ln ((cscu + cot u)⁻¹)

= - ln(cscu+cotu)

= RHS

Learn More:

Prove the following trigonometric identities: sinA/secA+tanA-1+cotA ...

brainly.in/question/15922912

1-sinA / 1-secA - 1+sinA/1+secA6​= 2cotA (cosA- cosecA) - Brainly.in

brainly.in/question/11616813

Answered by pulakmath007
7

SOLUTION

TO PROVE

 \sf{ \ln ( \csc u \:  -  \cot u) =  -  \ln ( \csc u \:   +   \cot u) }

FORMULA TO BE IMPLEMENTED

 \sf{1. \:  { \csc}^{2}u -   { \cot}^{2} u = 1 }

 \sf{2. \:  \ln (xy) =  \ln x +  \ln y}

EVALUATION

Here we have

 \sf{ { \csc}^{2}u -   { \cot}^{2} u = 1 }

Taking logarithm in both sides we get

 \sf{ \implies \ln ( { \csc}^{2}u -   { \cot}^{2} u) =  \ln 1 }

 \sf{ \implies \ln  \bigg[(  \csc u  +   \cot u)( \csc u -    \cot u) \bigg]   =  0 }

 \sf{ \implies \ln (  \csc u  +    \cot u) +  \ln ( \csc u -    \cot u)  =  0 }

 \sf{ \implies \ln (  \csc u  +    \cot u)  =  -   \ln ( \csc u -    \cot u)   }

 \sf{ \ln ( \csc u \:  -  \cot u) =  -  \ln ( \csc u \:   +   \cot u) }

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if 2log x base y=6,then the relation between x and y

https://brainly.in/question/27199002

2. If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Similar questions