Math, asked by suriyakantapalkalabe, 1 month ago

prove that log(n+1) to the base n > log(n+2) to the base (n+1)​

Answers

Answered by singhkhushdeep100
0

Answer:

Just simply look at the function f(t)=t−log(t). You can show that this function is always increasing and that f(n)≥f(1)=1 for every n.

Answered by mathdude500
4

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\: log_{n}(n + 1)  >  log_{n + 1}(n + 2)

\large\underline{\sf{Solution-}}

Without loss of inequality, n > 1

We know,

\rm :\longmapsto\:n  <  n + 1

\bf\implies \:\dfrac{1}{n}  > \dfrac{1}{n + 1}

\bf\implies \:\dfrac{1}{n} + 1  > \dfrac{1}{n + 1}  + 1

\bf\implies \:\dfrac{1 + n}{n}   > \dfrac{1 + 1 + n}{n + 1}

\bf\implies \:\dfrac{1 + n}{n}   > \dfrac{2+ n}{n + 1}

Taking log to the base n on both sides, we get

\rm :\longmapsto\: log_{n}\bigg[\dfrac{n + 1}{n}\bigg] >  log_{n}\bigg[\dfrac{n + 2}{n + 1}\bigg] \:  \: as \: n > 1

Now,

Let assume that

\rm :\longmapsto\: log_{n}(z) = x \:  \: and \:  log_{n + 1}(z) = y

\rm :\longmapsto\:z =  {n}^{x} \:  \: and \:  \: z =  {(n + 1)}^{y}

\bf\implies \: {n}^{x} =  {(n + 1)}^{y}

For equality to be maintained,

\rm :\longmapsto\:x > y \: as \: n \:  <  \: n + 1

\rm :\longmapsto\: log_{n}(z)  \:  >  \:  log_{n + 1}(z)

 \red{\rm :\longmapsto\:On \: replacing \: z \: by \: \dfrac{n + 2}{n + 1}}

\rm :\longmapsto\:log_{n}\bigg[\dfrac{n + 2}{n + 1}\bigg] > log_{n + 1}\bigg[\dfrac{n + 2}{n + 1}\bigg]

As,

\rm :\longmapsto\: log_{n}\bigg[\dfrac{n + 1}{n}\bigg] >  log_{n}\bigg[\dfrac{n + 2}{n + 1}\bigg] \:  \:

\bf\implies \:\: log_{n}\bigg[\dfrac{n + 1}{n}\bigg] >  log_{n + 1}\bigg[\dfrac{n + 2}{n + 1}\bigg] \:  \:

We know that,

 \boxed{ \bf{ \: log_{a}\bigg[\dfrac{x}{y}\bigg] =  log_{a}(x) -  log_{a}(y)}}

So, using this we get

\rm :\longmapsto\: log_{n}(n + 1)  -  log_{n}(n)  >  log_{n + 1}(n + 2)  -  log_{n + 1}(n + 1)

We know,

 \boxed{ \bf{ \:  log_{x}(x) = 1}}

So, using this, we get

\rm :\longmapsto\: log_{n}(n + 1)  -  1  >  log_{n + 1}(n + 2)  -  1

\rm :\longmapsto\: log_{n}(n + 1)  >  log_{n + 1}(n + 2)

Hence, Proved

Additional Information :-

 \boxed{ \bf{ \:  log(xy) =  log(x)  +  log(y)}}

 \boxed{ \bf{ \:  log \frac{x}{y}  =  log(x)  -  log(y)}}

 \boxed{ \bf{ \:  log {x}^{y}  = y \: logx}}

 \boxed{ \bf{ \:  {e}^{logx}  = x}}

 \boxed{ \bf{ \:  {a}^{ log_{a}(x) }  = x}}

 \boxed{ \bf{ \:  {a}^{ ylog_{a}(x) }  =  {x}^{y} }}

 \boxed{ \bf{ \:  log_{ {x}^{y} }( {x}^{z} )  =  \frac{z}{y}}}

Similar questions