Math, asked by roopa144, 11 months ago

Prove that log of base 2 [log of base 2 [log of base 2 16]] = 1​

Answers

Answered by kaushik05
35

 \huge \boxed{ \red{ \mathfrak{solution}}}

To prove :

  \bold{log_{2} log_{2} log_{2}(16)  = 1}

LHS

 \leadsto \:  log_{2} log_{2} log_{2}(16)  \\  \\  \leadsto  log_{2} log_{2} log_{2}( {2}^{4} )  \\  \\  \leadsto \:  log_{2} log_{2}4 log_{2}(2)  \\  \\  \leadsto   log_{2} log_{2}(4) \\  \\   \leadsto log_{2} log_{2}( {2}^{2} )  \\  \\  \leadsto \:  log_{2}2 log_{2}(2)  \\  \\ \leadsto \:  log_{2}(2) (1) \\  \\  \leadsto \: (1)(1) \\  \\  \leadsto 1

LHS=RHS

 \huge \boxed{ \bold{\pink{proved}}}

Formula used:

 \star{ \bold{ log_{x}(x)  = 1}}

 \star \: \bold{  log_{a}( {b}^{c} )  = c log_{a}(b) }

Similar questions