Prove that :-
log2+16log16/15+12log25/24+7log81/80 =1
Answers
Answer:
Change everything to log 2, log 3, and log 5.
log 2 = log 2
16 log (16/15)
= 16 (log 16 - log 15)
= 16 (log (2^4) - log (3 x 5))
= 16 ((4 log 2 - (log 3 + log 5))
= 64 log 2 - 16 log 3 - 16 log 5
12 log (25/24)
= 12 (log 25 - log 24)
= 12 (log (5^2) - log ((2^3) (3)))
= 12 (2 log 5 - (log (2^3) + log 3))
= 12 (2 log 5 - (3 log 2 + log 3))
= - 36 log 2 - 12 log 3 + 24 log 5
7 log (81/80)
= 7 (log 81 - log 80)
= 7 ( log 3^4 - log ((2^4) (5))
= 7 (4 log 3 - (log 2^4 + log 5))
= 7 (3 log 3 - 4 log 2 - log 5)
= - 28 log 2 + 28 log 3 - 7 log 5
Add them = log 2 + log 5 = log 10 = 1
Thank you.
please mark me as brainliest
Step-by-step explanation:
We can write
n log a = log aⁿ and
log m + log n + log p = log (mnp)
Hence
log 2+ 16 log (16/15) + 12 log (25/24) + 7 log (81/80)
= log 2 + log (16/15)^16 + log (25/24)^12 + log (81/80)^7
= log 2 + log {2⁴/(3*5)}^16 + log{5²/(3*2³)}^12 + log{3⁴/(2⁴*5)}^7
= log [ 2* {2^64/(3^16*5^16)}*{5^24/(3^12*2^36)}*{3^28/(2^28*5^7) }]
= log ( 2*5)
= log 10
= 1.