prove that log75/16 - 2log5/9 + log32/243 = log2
Answers
Answered by
5
EXPLANATION.
Prove that.
⇒ ㏒(75/16) - 2㏒(5/9) + ㏒(32/243) = ㏒(2).
As we know that,
We can write equation as,
⇒ ㏒(75/16) - ㏒(5/9)² + ㏒(32/243).
⇒ ㏒(75/16) - ㏒(25/81) + ㏒(32/243).
⇒ ㏒(75/16/25/81) + ㏒(32/243).
⇒ ㏒(75/16 x 81/25) + ㏒(32/243).
⇒ ㏒(243/16) + ㏒(32/243).
⇒ ㏒[243/16 x 32/43].
⇒ ㏒(2).
Hence Proved.
MORE INFORMATION.
Properties of logarithms.
Let M and N arbitrary positive number such that a > 0, a ≠ 1, b > 0, b ≠ 1 then.
(1) = ㏒ₐMN = ㏒ₐM + ㏒ₐN.
(2) = ㏒ₐ(M/N) = ㏒ₐM - ㏒ₐN.
(3) = ㏒ₐN^(α) = α㏒ₐN. (α any real number).
(4) = ㏒ₐ^(β)N^(α) = (α/β)㏒ₐN (α ≠ 0, β ≠ 0).
(5) = ㏒ₐN = ㏒_(b)N/㏒_(b)(a).
(6) = ㏒_(b) a. ㏒ₐb = 1 ⇒ ㏒_(b)a = 1/㏒ₐb.
(7) = e^(㏑a)ˣ = aˣ.
Similar questions
World Languages,
1 month ago
English,
1 month ago
Computer Science,
2 months ago
Hindi,
2 months ago
Social Sciences,
10 months ago
Physics,
10 months ago