Math, asked by seikhsouvagyamustaki, 1 month ago

Prove that
Lt/(h->0): [(a+h)^2 sin(a+h)-a^2 sina]/h
= 2a sina + a^2 cosa

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Consider,

\red{\rm :\longmapsto\:\displaystyle\lim_{h \to 0}\sf \frac{ {(a + h)}^{2} sin(a + h) -  {a}^{2}sina}{h} \: }

If we substitute directly h = 0, we get

\red{\rm \:  =  \: \sf \dfrac{ {(a + 0)}^{2} sin(a + 0) -  {a}^{2}sina}{0} \: }

\red{\rm \:  =  \: \sf \dfrac{ {a}^{2} sina -  {a}^{2}sina}{0} \: }

\red{\rm \:  =  \: \sf \dfrac{ 0}{0} \: }

which is indeterminant form.

So, Consider again

\red{\rm :\longmapsto\:\displaystyle\lim_{h \to 0}\sf \frac{ {(a + h)}^{2} sin(a + h) -  {a}^{2}sina}{h} \: }

can be rewritten as

=\displaystyle\lim_{h \to 0}\sf \frac{({a}^{2}+{h}^{2}+2ah)sin(a + h)-{a}^{2}sina}{h}

\sf=\displaystyle\lim_{h \to 0}\sf \frac{{a}^{2}sin(a + h)+{h}^{2}sin(a + h)+2ahsin(a + h)-{a}^{2}sina}{h}

can be rewritten as

\sf=\displaystyle\lim_{h \to 0}\sf \frac{{a}^{2}sin(a + h)-{a}^{2}sina+{h}^{2}sin(a + h)+2ahsin(a + h)}{h}

\sf=\displaystyle\lim_{h \to 0}\sf \frac{{a}^{2}sin(a + h)-{a}^{2}sina}{h} + \displaystyle\lim_{h \to 0}\sf \frac{{h}^{2}sin(a + h)+2ahsin(a + h)}{h}

\sf=\displaystyle\lim_{h \to 0}\sf \frac{{a}^{2}[sin(a + h)-sina]}{h} + \displaystyle\lim_{h \to 0}\sf \frac{h[hsin(a + h)+2asin(a + h)]}{h}

\sf= {a}^{2} \displaystyle\lim_{h \to 0}\sf \frac{sin(a + h)-sina}{h} + \displaystyle\lim_{h \to 0}\sf \frac{[hsin(a + h)+2asin(a + h)]}{1}

We know

 \red{\boxed{ \tt{ \: sinx - siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }}}

\sf= {a}^{2} \displaystyle\lim_{h \to 0}\sf \frac{2cos\bigg[\dfrac{a + h + a}{2} \bigg]sin\bigg[\dfrac{a + h - a}{2} \bigg]}{h} +2asina

\sf= {a}^{2} \displaystyle\lim_{h \to 0}\sf \frac{2cos\bigg[\dfrac{2a + h}{2} \bigg]sin\bigg[\dfrac{h}{2} \bigg]}{h} +2asina

\sf= 2{a}^{2}cosa \displaystyle\lim_{h \to 0}\sf \frac{sin\bigg[\dfrac{h}{2} \bigg]}{\dfrac{h}{2} } \times \dfrac{1}{2}  +2asina

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{sinx}{x} = 1 \: }}}

So, using this, we get

\rm \:  = \sf {a}^{2} cosa \times 1 + 2a \: sina

\rm \:  = \sf {a}^{2} cosa + 2a \: sina

Hence,

\red{\rm \:\boxed{ \tt{ \: \displaystyle\lim_{h \to 0}\sf \frac{ {(a + h)}^{2} sin(a + h) -  {a}^{2}sina}{h}  =  {a}^{2}cosa + 2a \: sina \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{sinx}{x} = 1 \: }}}

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{tanx}{x} = 1 \: }}}

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{log(1 + x)}{x} = 1 \: }}}

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{ {e}^{x}  - 1}{x} = 1 \: }}}

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{ {a}^{x}  - 1}{x} = loga \: }}}

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{sin ^{ - 1} x}{x} = 1 \: }}}

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{tan ^{ - 1} x}{x} = 1 \: }}}

Similar questions