Math, asked by categoryofnoun, 1 year ago

prove that (m+n)*-1 (m*-1+n*-1)=(mn)*-1

Answers

Answered by Anonymous
232
HELLO DEAR,

 {(m + n)}^{ - 1} ( {m}^{ - 1} + {n}^{ - 1} ) \\ \\ => \frac{1}{ {(m + n)}^{1} } \times ( \frac{1}{m} + \frac{1}{n} ) \\ \\ = > \frac{1}{(m + n)} \times \frac{(m + n)}{mn} \\ \\ = > \frac{1}{mn} = {(mn)}^{ - 1}

I HOPE ITS HELP YOU DEAR,
THANKS

QUEEN007: In final answer there should be bracket to mn
Anonymous: yea oka oka
QUEEN007: edit
Answered by TheEdward
75
Heya 

LHS 

(m+n)⁻¹ (m⁻¹ + n⁻¹) 

1/( m + n) ( 1/m + 1/n ) 

1/(m+ n) ( m + n) /mn 

1/mn 

(mn) ⁻¹ = RHS :D
Similar questions