Math, asked by harry3223, 1 year ago

prove that (n-1)!/(n-r-1)!+r*(n-1)!/(n-r)!=n!/(n-r)!​

Answers

Answered by balakrishna40
16

I hope u understand it well

Attachments:

SonuDagar1: ??
Answered by Anonymous
16

Given :

\bullet \large \: \tt \frac{(n - 1)!}{n - r - 1)!}+ r. \frac{(n - 1)!}{n - r)!}=\frac{n!}{(n-r)!}\\

Solution :

On solving L.H.S.

 \tt \implies \frac{(n - 1)!}{n - r - 1)!}+ r. \frac{(n - 1)!}{n - r)!}  \\  \\  \tt \implies(n - 1)!  \bigg[ \frac{(n - r}{n - r - 1)! \times (n - r)}  +  \frac{r}{(n - r)!}  \bigg] \\  \\  \implies \tt(n - 1)!  \bigg[ \frac{n - r}{(n - r)!}  +  \frac{r}{(n - r)!}  \bigg] \\  \\ \tt \implies(n - 1)! \bigg[ \frac{n - r + r}{(n - r)!} \bigg]  \\  \\ \tt \implies \frac{(n - 1)! \times n}{(n - r)!}  \\  \\  \tt \implies \frac{n!}{(n - r)!}  = R.H.S

Hence Proved

Similar questions