Math, asked by kchaturya28, 1 year ago

prove that n^3-n is divisible by 6?


raoatchut191: is it (n^3)-n

Answers

Answered by rishimhaske
8
n3- n
=n(n2- 1)
=n(n-1)(n+1)
if n is even it is divigible by 2. If n is odd then n+1 is even.

(n-1)n(n+1) are three contineous no. so, each value of n, one of them divigible by 3.

Since, n3-n is divigible by 2 and 3, so it must be divigible by 6

Answered by Anonymous
1

Step-by-step explanation:

▶ n³ - n = n (n² - 1) = n (n - 1) (n + 1)

Whenever a number is divided by 3, the remainder obtained is either 0 or 1 or 2.

∴ n = 3p or 3p + 1 or 3p + 2, where p is some integer.

If n = 3p, then n is divisible by 3.

If n = 3p + 1, then n – 1 = 3p + 1 –1 = 3p is divisible by 3.

If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3.

So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 3.

⇒ n (n – 1) (n + 1) is divisible by 3.

Similarly, whenever a number is divided 2, the remainder obtained is 0 or 1.

∴ n = 2q or 2q + 1, where q is some integer.

If n = 2q, then n is divisible by 2.

If n = 2q + 1, then n – 1 = 2q + 1 – 1 = 2q is divisible by 2 and n + 1 = 2q + 1 + 1 = 2q + 2 = 2 (q + 1) is divisible by 2.

So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 2.

⇒ n (n – 1) (n + 1) is divisible by 2.

Since, n (n – 1) (n + 1) is divisible by 2 and 3.

∴ n ( n - 1 ) ( n + 1 ) = n³ - n is divisible by 6.( If a number is divisible by both 2 and 3 , then it is divisible by 6)

✔✔ Hence, it is solved ✅✅.

Similar questions