Prove that (n³ - n) is Divisible by 6 if n is Positive Integer.
Answers
Answer:
n3 – n = n(n2 – 1) = n(n+1)(n – 1) = (n – 1)n(n+1) = product of three consecutive positive integers.
Now, we have to show that the product of three consecutive positive integers is divisible by 6.
We know that any positive integer n is of the form 3q, 3q + 1 or 3q + 2 for some positive integer q.
Now three consecutive positive integers are n, n + 1, n + 2.
Case I. If n = 3q.
n(n + 1) (n + 2) = 3q(3q + 1) (3q + 2)
But we know that the product of two consecutive integers is an even integer.
∴ (3q + 1) (3q + 2) is an even integer, say 2r.
⟹ n(n + 1) (n + 2) = 3q × 2r = 6qr, which is divisible by 6.
Case II. If n = 3n + 1.
∴ n(n + 1) (n + 2) = (3q + 1) (3q + 2) (3q + 3)
= (even number say 2r) (3) (q + 1)
= 6r (q + 1),
which is divisible by 6.
Case III. If n = 3q + 2.
∴ n(n + 1) (n + 2) = (3q + 2) (3q + 3) (3q + 4)
= multiple of 6 for every q
= 6r (say),
which is divisible by 6.
Hence, the product of three consecutive integers is divisible by 6.
Hi friend!!
→ (n³-n)
Put n = 1,
(1³-1) = 1-1 = 0 is divisible by 6
Put n = 2,
(2³-2) = 8-2 = 6 is divisible by 6
Put n = 3,
(3³-3) = 27-3 = 24 is divisible by 6
Put n = 4,
(4³-4) = 64-4 = 60 is divisible by 6
Therefore,For any positive integer 'n', (n³ -n) is divisible by 6.