Math, asked by XxsoumyaxX, 18 days ago

Prove that,
→No irrevelant answers
→No meet links
→No spams
\sf{ \frac{ {tan}^{2}  \: A}{ {tan}^{2} \: A - 1 }  +   \frac{ {cosec}^{2}  \: A}{ {sec}^{2} \: A -  {cosec}^{2}  \: A }   =  \frac{1}{1 - 2 {cos}^{2} \:  \: A } }

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: \dfrac{ {tan}^{2} \: A}{ {tan}^{2} \: A - 1 } + \dfrac{ {cosec}^{2} \: A}{ {sec}^{2} \: A - {cosec}^{2} \: A}

can be rewritten as

\rm \: =  \:\dfrac{\dfrac{ {sin}^{2} A}{ {cos}^{2} A} }{ \:  \: \dfrac{ {sin}^{2} A}{ {cos}^{2} A} - 1 \:  \: }  + \dfrac{\dfrac{1}{ {sin}^{2} A} }{\dfrac{1}{ {cos}^{2} A}  - \dfrac{1}{ {sin}^{2} A} }  \\

can be further rewritten as

\rm \: =  \:\dfrac{\dfrac{ {sin}^{2} A}{ {cos}^{2} A} }{ \:  \: \dfrac{ {sin}^{2} A -  {cos}^{2} A}{ {cos}^{2} A} \:  \: }  + \dfrac{\dfrac{1}{ {sin}^{2} A} }{\dfrac{ {sin}^{2} A -  {cos}^{2} A}{ {cos}^{2} A \:  {sin}^{2} A} }  \\

\rm \:  =  \: \dfrac{ {sin}^{2} A}{ {sin}^{2} A -  {cos}^{2} A}  + \dfrac{ {cos}^{2}A}{{sin}^{2} A -  {cos}^{2} A}  \\

\rm \:  =  \: \dfrac{ {sin}^{2} A +  {cos}^{2}A }{ {sin}^{2} A -  {cos}^{2} A}   \\

\rm \:  =  \: \dfrac{1}{ {sin}^{2} A -  {cos}^{2} A}   \\

can be further rewritten as

\rm \:  =  \: \dfrac{1}{1 -  {cos}^{2} A -  {cos}^{2} A}   \\

\rm \:  =  \: \dfrac{1}{1 -  2{cos}^{2} A}   \\

Hence,

\color{green}\rm\implies \:\dfrac{ {tan}^{2} \: A}{ {tan}^{2} \: A - 1 } + \dfrac{ {cosec}^{2} \: A}{ {sec}^{2} \: A - {cosec}^{2} \: A }  =  \: \dfrac{1}{1 -  2{cos}^{2} A}   \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:tanx =  \frac{sinx}{cosx} \: }} \\

\boxed{ \rm{ \:secx =  \frac{1}{cosx} \: }} \\

\boxed{ \rm{ \:cosecx =  \frac{1}{sinx} \: }} \\

\boxed{ \rm{ \: {sin}^{2}x +  {cos}^{2}x = 1 \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 }\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by Anonymous
5

The song I attached in my question, It's superb!! I suggest you to listen it :)

(Don't take it as a wrong way, I am just telling to listen, the song is good)

Similar questions