Math, asked by mdsahebraj1786, 10 months ago

Prove that npr=n-1pr+r. (n-1)pr-1.​

Answers

Answered by sandy1816
22

Step-by-step explanation:

RHS

(n-1)!/(n-1-r)!+r.(n-1)!/(n-r)!

=(n-1)!/(n-r-1)!+r.(n-1)!/(n-r).(n-r-1)!

=(n-1)!/(n-r-1)!+(1+r/n-r)

=(n-1)!/(n-r-1)!(n/n-r)

=n!/(n-r)!

=nPr

Attachments:
Answered by FelisFelis
16

nP_r=^{n-1}P_r+r\cdot^{n-1}P_{r-1} proved.

Step-by-step explanation:

Consider the provided information.

We need to prove that ^nP_r=^{n-1}P_r+r\cdot^{n-1}P_{r-1}

Consider the Right hand side.

\begin{aligned}^{n-1}P_r+r\cdot^{n-1}P_{r-1}&=\frac{(n-1)!}{(n-r-1)!}+\frac{r(n-1)!}{(n-r+1-1)!}\\&=\frac{(n-1)!}{(n-r-1)!}+\frac{r(n-1)!}{(n-r)!}\\&=\frac{(n-1)!}{(n-r-1)!}\left[1+\frac{r}{n-r}\right]\\&=\frac{(n-1)!}{(n-r-1)!}\left[\frac{n-r+r}{n-r}\right]\\&=\frac{n(n-1)!}{(n-1)\cdot(n-r-1)!}\\&=\frac{n!}{(n-r)!}\\&=^nP_r\end{aligned}

Hence, proved

#Learn more

Permutation and combination formula list

https://brainly.in/question/1622568

Similar questions