Math, asked by archanachougale2719, 8 months ago

Prove that one and only one out of n, n+2 and n+4 is divisible by 3, where n is any positive integer.

Answers

Answered by harikairuvuru
0

Answer:

Step-by-step explanation:

let n be any positive integer and b=3

n =3q+r

where q is the quotient and r is the remainder

0_ <r<3

so the remainders may be 0,1 and 2

so n may be in the form of 3q, 3q=1,3q+2

CASE-1

IF N=3q

n+4=3q+4

n+2=3q+2

here n is only divisible by 3

CASE 2

if n = 3q+1

n+4=3q+5

n+2=3q=3

here only n+2 is divisible by 3

CASE 3

IF n=3q+2

n+2=3q+4

n+4=3q+2+4

=3q+6

here only n+4 is divisible by 3

HENCE IT IS JUSTIFIED THAT ONE AND ONLY ONE AMONG n,n+2,n+4 IS DIVISIBLE BY 3 IN EACH CASE

Similar questions