Prove that one of any three consecutive positive integer must be divisible by 3
Answers
Answered by
6
Ans:
n,n+1,n+2 be three consecutive positive integers We know that n is of the form 3q, 3q +1, 3q + 2
So we have the following cases
Case – I when n = 3q
In the this case, n is divisible by 3 but n + 1 and n + 2 are not divisible by 3
Case - II When n = 3q + 1
Sub n = 2 = 3q +1 +2 = 3(q +1) is divisible by 3. but n and n+1 are not divisible by 3
Case – III When n = 3q +2
Sub n = 2 = 3q +1 +2 = 3(q +1) is divisible by 3. but n and n+1 are not divisible by 3
Hence one of n, n + 1 and n + 2 is divisible by 3
n,n+1,n+2 be three consecutive positive integers We know that n is of the form 3q, 3q +1, 3q + 2
So we have the following cases
Case – I when n = 3q
In the this case, n is divisible by 3 but n + 1 and n + 2 are not divisible by 3
Case - II When n = 3q + 1
Sub n = 2 = 3q +1 +2 = 3(q +1) is divisible by 3. but n and n+1 are not divisible by 3
Case – III When n = 3q +2
Sub n = 2 = 3q +1 +2 = 3(q +1) is divisible by 3. but n and n+1 are not divisible by 3
Hence one of n, n + 1 and n + 2 is divisible by 3
sohansingh:
wel come
Answered by
1
Step-by-step explanation:
Let 3 consecutive positive integers be n, n + 1 and n + 2 .
Whenever a number is divided by 3, the remainder we get is either 0, or 1, or 2.
:
Therefore:
n = 3p or 3p+1 or 3p+2, where p is some integer
If n = 3p = 3(p) , then n is divisible by 3
If n = 3p + 1, then n + 2 = 3p +1 + 2 = 3 p + 3 = 3 ( p + 1 ) is divisible by 3
If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3
Thus, we can state that one of the numbers among n, n+1 and n+2 is always divisible by 3
Hence it is solved.
Similar questions