Prove that one of every three consecutive positive integers is divisible by 3..
Answers
Answered by
590
HEYY
HERE IS YOUR ANSWER. ...
Let three consecutive positive integers be n, n + 1 and n + 2.
Whenever a number is divided by 3, the remainder obtained is either 0 or 1 or 2.
∴ n = 3p or 3p + 1 or 3p + 2, where p is some integer.
If n = 3p, then n is divisible by 3.
If n = 3p + 1, then n + 2 = 3p + 1 + 2 = 3p + 3 = 3(p + 1) is divisible by 3.
If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3.
So, we can say that one of the numbers among n, n + 1 and n + 2 is always divisible by 3.
HOPE IT HELPS U !!!
HERE IS YOUR ANSWER. ...
Let three consecutive positive integers be n, n + 1 and n + 2.
Whenever a number is divided by 3, the remainder obtained is either 0 or 1 or 2.
∴ n = 3p or 3p + 1 or 3p + 2, where p is some integer.
If n = 3p, then n is divisible by 3.
If n = 3p + 1, then n + 2 = 3p + 1 + 2 = 3p + 3 = 3(p + 1) is divisible by 3.
If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3.
So, we can say that one of the numbers among n, n + 1 and n + 2 is always divisible by 3.
HOPE IT HELPS U !!!
Answered by
6
Given; that the Divisor is 3
To Find; that one of every three consecutive positive integers is divisible by 3
Solution; This question can be easily solved by letting three consecutive positive integers like 5,6 and 7
Here we notice that six is divisible by two
Hence proved
Similar questions