Math, asked by raiden28, 1 year ago

prove that one upon cosec theta + cot theta minus one upon sin theta equals to one upon sin theta minus one by cos theta minus cos theta

Attachments:

Answers

Answered by sheerin143
218
hope it helps many. easy method
Attachments:
Answered by mysticd
103

Answer:

\frac{1}{cosec\theta+cot\theta}-\frac{1}{sin\theta}=\frac{1}{sin\theta}-\frac{1}{cosec\theta-cot\theta}

Step-by-step explanation:

LHS = \frac{1}{cosec\theta+cot\theta}-\frac{1}{sin\theta}\\=\frac{cosec\theta-cot\theta}{(cosec\theta+cot\theta)(cosec\theta-cot\theta)}-\frac{1}{sin\theta}\\=\frac{cosec\theta-cot\theta}{(cosec^{2}\theta-cot^{2}\theta)}-\frac{1}{sin\theta}\\=cosec\theta-cot\theta-cosec\theta= -cot\theta\: ---(1)

RHS=\frac{1}{sin\theta}-\frac{1}{cosec\theta-cot\theta}\\=\frac{1}{sin\theta}-\frac{cosec\theta+cot\theta}{(cosec\theta-cot\theta)(cosec\theta+cot\theta)}\\=\frac{1}{sin\theta}-\frac{cosec\theta+cot\theta}{(cosec^{2}\theta-cot^{2}\theta)}\\=cosec\theta-(cosec\theta+cot\theta)\\=cosec\theta-cosec\theta-cot\theta\\=-cot\theta \: ---(2)

From equations (1) and (2) it follows that ,

LHS = RHS

Similar questions