Math, asked by sparshsharma61, 9 months ago

prove that one upon root 4 + root 5 + 1 upon root 5 + root 6 + 1 upon root 6 + root 7 + 1 upon root 7 + root 8 + 1 upon root 8 + 9 equal 1​

Answers

Answered by 11chopsticks
0

Answer:

Cannot equal.

Remember

Square Root ≥ 0

Since root 4 = 2

Their sum ≥ 2 > 1.

Therefore, it cannot equal.

Answered by GraceS
7

\sf\huge\bold{Answer:}

Given :

 \tt\  \frac{ \:  \:  \: 1}{ \sqrt{4} }  +  \sqrt{5}  +  \frac{1}{ \sqrt{5} } +  \frac{1}{ \sqrt{6} }   +  \sqrt{7}  +  \sqrt{8}  +  \frac{1}{ \sqrt{8} }  = 1 \\

To prove :

  • LHS=RHS or not

Solution :

  • LHS

 \tt\ =   \frac{ \:  \:  \: 1}{ \sqrt{4} }  +  \sqrt{5}  +  \frac{1}{ \sqrt{5} } +  \frac{1}{ \sqrt{6} }   +  \sqrt{7}  +  \sqrt{8}  +  \frac{1}{ \sqrt{8} }  \\

  • Taking LCM

 \tt\ =   \frac{ \:  \:  \: 1}{ \sqrt{4} }  +   \frac{ (\sqrt{5} \times  \sqrt{5} )+   1}{ \sqrt{5} } +  \frac{1}{ \sqrt{6} }   +  \sqrt{7}    +  \frac{ (\sqrt{8} \times  \sqrt{8}   )+ 1}{ \sqrt{8} }   \\

 \tt\ =   \frac{ \:  \:  \: 1}{ \sqrt{4} }  +   \frac{ \sqrt{5 \times 5}  +   1}{ \sqrt{5} } +  \frac{1}{ \sqrt{6} }   +  \sqrt{7}    +  \frac{ \sqrt{8 \times 8}    + 1}{ \sqrt{8} }   \\

 \tt\ =   \frac{ \:  \:  \: 1}{ \sqrt{4} }  +   \frac{ 5  +   1}{ \sqrt{5} } +  \frac{1}{ \sqrt{6} }   +  \sqrt{7}    +  \frac{ 8    + 1}{ \sqrt{8} }   \\

 \tt\ =   \frac{ \:  \:  \: 1}{ \sqrt{4} }  +   \frac{  \:  \:  \: 6}{ \sqrt{5} } +  \frac{1}{ \sqrt{6} }   +  \sqrt{7}    +  \frac{  \:  \:  \: 9}{ \sqrt{8} }   \\

 \tt\ =   \frac{ \:  \:  \: 1}{ \sqrt{4} }  +   \frac{  \:  \:  \: 6}{ \sqrt{5} } +  \frac{1}{ \sqrt{6} }   +   \frac{ \sqrt{7} }{1}    +  \frac{  \:  \:  \: 9}{ \sqrt{8} }   \\

  • Simplifying by remove square roots

 \tt\ =   \frac{1}{ 2 }  +   \frac{  \:  \:  \: 6}{ \sqrt{5} } +  \frac{1}{ \sqrt{6} }   +  \sqrt{7}    +  \frac{  \:  \:  \: 9}{ 2\sqrt{2} }   \\

 \tt\ =   \frac{1}{ 2 }  +  \frac{  \:  \:  \: 9}{ 2\sqrt{2} }     +   \frac{  \:  \:  \: 6}{ \sqrt{5} } +  \frac{1}{ \sqrt{6} }   +   \frac{ \sqrt{7} }{1} \\

  • Taking LCM

 \tt\ =    \bigg( \frac{  \sqrt{2} +  9}{ 2\sqrt{2} }  \bigg)    +    \bigg(\frac{   6 \sqrt{6}  + 1 \sqrt{5} }{ \sqrt{5}  \times  \sqrt{6}}  \bigg)  +   \frac{ \sqrt{7} }{1} \\

 \tt\ =    \bigg( \frac{  \sqrt{2} +  9}{ 2\sqrt{2} }  \bigg)    +    \bigg(\frac{   6 \sqrt{6}  +  \sqrt{5} }{ \sqrt{30} }  \bigg)  +   \frac{ \sqrt{7} }{1} \\

  • Rationalising denominator

 \tt\ =    \bigg( \frac{  \sqrt{2} +  9}{ 2\sqrt{2} } \times  \frac{2 \sqrt{2} }{ 2\sqrt{2} }   \bigg)    +    \bigg(\frac{   6 \sqrt{6}  +  \sqrt{5} }{ \sqrt{30} }  \times  \frac{ \sqrt{30} }{ \sqrt{30} }  \bigg)  +   \frac{ \sqrt{7} }{1}  \\

 \tt\ =    \bigg( \frac{2 \times  \sqrt{2} \times  \sqrt{2}  + 9 }{2 \times 2 \times  \sqrt{2} \times  \sqrt{2}  }    \bigg)    +    \bigg(\frac{6 \sqrt{6}  \times  \sqrt{30}  +  \sqrt{5} \times  \sqrt{30}      }{ \sqrt{30} \times  \sqrt{30}  }  \bigg)  +   \frac{ \sqrt{7} }{1}  \\

\tt\ =    \bigg( \frac{2 \times  2  + 9 }{4 \times 2 }    \bigg)    +    \bigg(\frac{6 \sqrt{6}  \times  \sqrt{5 \times 6}  +  \sqrt{5} \times  \sqrt{5 \times 6}      }{ 30 }  \bigg)  +   \frac{ \sqrt{7} }{1}  \\

\tt\ =    \bigg( \frac{4  + 9 }{8 }    \bigg)    +    \bigg(\frac{6  \times {6}  \times  \sqrt{5 }  +  {5} \times  \sqrt{  6}      }{ 30 }  \bigg)  +   \frac{ \sqrt{7} }{1}  \\

\tt\ =    \bigg( \frac{13 }{8 }    \bigg)    +    \bigg(\frac{36 \sqrt{5 }  +  {5}  \sqrt{  6}      }{ 30 }  \bigg)  +   \frac{ \sqrt{7} }{1}  \\

  • Taking LCM

 \tt\  =  \frac{30 \times 13 + 8(36 \sqrt{5} + 5 \sqrt{6} ) +  \sqrt{7}   \times 8 \times 30}{8 \times 30}  \\

 \tt\  =  \frac{390 + 288 \sqrt{5}  + 40 \sqrt{6} + 240 \sqrt{7}  }{240}  \\

  • Putting values of √5,√6 & √7

 \tt\  =  \frac{390 + 288  \times 2.23  + 40  \times 2.44 + 240  \times 2.64  }{240}  \\

 \tt\  =  \frac{390 + 643.9  + 97.9 + 634.9 }{240}  \\

 \tt\  = \frac{1766.7}{240}  \\

 \tt\  =7.36125

 \tt\ ≈7

  • RHS

 \tt\  = 1

\rm \red {LHS≠RHS}

Hence, the above statement is incorrect.

Similar questions