prove that opposite sides of a quadrilateral circumscribing a circle substended suplementary angles at center of the circle
Answers
GIVEN ;-
ABCD is a quadrilateral and it has circumscribing a circle Which has centre O.
CONSTRUCTION ;-
Join - AO, BO, CO, DO.
PROOF ;-
⇒ In the given figure , we can see that
∠DAO = ∠BAO [Because, AB and AD are tangents in the circle]
So , we take this angles as 1 , that is ,
⇒ ∠DAO = ∠BAO = 1
Also in quad. ABCD , we get,
⇒ ∠ABO = ∠CBO { Because , BA and BC are tangents }
⇒Also , let us take this angles as 2. that is ,
⇒ ∠ABO = ∠CBO = 2
⇒ As same as , we can take for vertices C and as well as D.
⇒ Sum. of angles of quadrilateral ABCD = 360°
Therefore,
⇒ 2 (1 + 2 + 3 + 4 ) = 360°
⇒ 1 + 2 + 3 + 4 = 180°
Now , in Triangle AOB,
⇒ ∠BOA = 180 – ( a + b )_______ { Equation 1 }
Also , In triangle COD,
⇒ ∠COD = 180 – ( c + d )_______{ Equation 2 }
From Eq. 1 and 2 we get ,
Angle BOA + Angle COD
= 360 – ( a + b + c + d )
= 360° – 180°
= 180°
We conclude that the line AB and CD subtend supplementary angles at the centre O
Hence it is proved that - opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
Amannnscharlie
Hey Mate :D
Your Answer :---
Let ABCD be a quadrilateral circumscribing a circle centered at O such that it touches the circle at point P, Q, R, S.
Let us join the vertices of the quadrilateral ABCD to the center of the circle.
[ plz see attached file also :) ]
Consider ∆OAP and ∆OAS,
AP = AS (Tangents from the same point)
OP = OS (Radii of the same circle)
OA = OA (Common side)
∆OAP ≅ ∆OAS (SSS congruence criterion)
Therefore, A ↔ A, P ↔ S, O ↔ O
And thus,
∠POA = ∠AOS ∠1 = ∠8 Similarly, ∠2 = ∠3 , ∠4 = ∠5, ∠6 = ∠7
now,
∠1 + ∠2 + ∠ 3 + ∠4 + ∠5 + ∠ 6 + ∠7 + ∠ 8 = 360º
( ∠ 1 + ∠ 8) + ( ∠ 2 + ∠ 3) + ( ∠4 + ∠ 5) + ( ∠6 + ∠ 7) = 360º
2 ∠1 + 2 ∠2 + 2∠ 5 + 2∠ 6 = 360º
2( ∠1 + ∠ 2) + 2( ∠5 + ∠ 6) = 360º
( ∠1 + ∠2 ) + ( ∠5 + ∠ 6) = 180º
∠AOB + ∠COD = 180º
Similarly, we can prove that
∠BOC + ∠DOA = 180º
Hence, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
Glad To Help :D
Follow me, Give Thanks If you like this answer :)