Math, asked by PredictorPrajwal, 3 months ago

prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.​

Answers

Answered by tuktuki8
2

Step-by-step explanation:

Let ABCD be a quadrilateral circumscribing a circle with centre O.

Now join AO, BO, CO, DO.

From the figure, ∠DAO=∠BAO [Since, AB and AD are tangents]

Let ∠DAO=∠BAO=1

Also ∠ABO=∠CBO [Since, BA and BC are tangents]

Let ∠ABO=∠CBO=2

Similarly we take the same way for vertices C and D

Sum of the angles at the centre is 360

o

Recall that sum of the angles in quadrilateral, ABCD = 360

o

=2(1+2+3+4)=360

o

=1+2+3+4=180

o

In ΔAOB,∠BOA=180−(1+2)

In ΔCOD,∠COD=180−(3+4)

∠BOA+∠COD=360−(1+2+3+4)

=360

o

–180

o

=180

o

Since AB and CD subtend supplementary angles at O.

Thus, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

please mark as brain list

Attachments:
Answered by DarkAngel87
3

Answer:

ANSWER

Let ABCD be a quadrilateral circumscribing a circle with centre O.

Now join AO, BO, CO, DO.

From the figure, ∠DAO=∠BAO [Since, AB and AD are tangents]

Let ∠DAO=∠BAO=1

Also ∠ABO=∠CBO [Since, BA and BC are tangents]

Let ∠ABO=∠CBO=2

Similarly we take the same way for vertices C and D

Sum of the angles at the centre is 360

o

Recall that sum of the angles in quadrilateral, ABCD = 360

o

=2(1+2+3+4)=360

o

=1+2+3+4=180

o

In ΔAOB,∠BOA=180−(1+2)

In ΔCOD,∠COD=180−(3+4)

∠BOA+∠COD=360−(1+2+3+4)

=360

o

–180

o

=180

o

Since AB and CD subtend supplementary angles at O.

Thus, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Step-by-step explanation:

mark it brainlist and follow me

Similar questions