Math, asked by WhyAlwaysMe, 11 months ago

Prove that opposite sides of parallelogram are equal...​

Answers

Answered by St08
2

Answer:

The opposite sides of a parallelogram are equal (and conversely: if the opposite sides of a quadrilateral are equal, it is a parallelogram). ... If one pair of opposite sides of a quadrilateral is equal and parallel, then the quadrilateral is a parallelogram

HOPE IT'S HELPFUL !

Answered by JanviMalhan
189

To Prove:

opposite sides of parallelogram are equal.

Proof :

Let us consider a parallelogram ABCD in which AB||CD and BC|| AD .

 \sf \: now \:  \:  \: in \triangle \: ABC \: and  \: \triangle CDA \:  \\  \angle \: CAB \:  =  \angle \:ACD \:  \:  \:  \:  \:  \: ( \sf \: alternate \: angle) \\  \angle \: ACB =  \angle \: CAD \:  \:  \:  \:  \:  \: ( \sf \: alternate \: angle) \\  \:AC = CA \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: ( \sf \: common) \\  \therefore \triangle \: ABC  \cong \: CDA \:  \:  \:  \:  \:  \sf(ASA \: congruency) \\   \sf \:  \sf \: hence \:  \: AB = CD \: and \: BC = AD \:  \:  \:  \:  \:  \:  \:  \sf \:( C.PC.T)

Similar questions