Math, asked by manjunath1843, 9 months ago

Prove that √p+√q is irrational where p and q are primes in long method​

Answers

Answered by kavithapotnuru49
2

Step-by-step explanation:

here's the answer friend

Attachments:
Answered by Anonymous
3

\huge{\green{\underline{\underline{\bf{\red{Solution}}}}}}

\large{\red{\underline{\underline{\bf{\blue{Given}}}}}}

  • √p+√q is irrational where p and q are primes in long method.

\large{\red{\underline{\underline{\bf{\blue{To \: find}}}}}}

  • Prove that √p+√q is irrational.

\huge{\green{\underline{\underline{\bf{\red{Explanation}}}}}}

\large{\red{\underline{\blue{A.T.Q}}}}

 \rightarrow \consider \ \sqrt{p}  +  \ \sqrt{q}  \is \rational. \\  \\

  \sqrt{p}  \ \sqrt{q}  \ =  \x \\  \\

x \is \also \rational \number. \\  \\

squaring \both \sides \\  \\

 ( \sqrt{p}   +  \sqrt{q}  ^{2} ) \ =  \x  ^{2}  \\  \\

 ( \sqrt{p ^{2} } ) + ( \sqrt{q}  ^{2} ) +  \sqrt[2]{pq}  \ =  \x ^{2}  \\  \\

p  \+ \ q \ +  \sqrt[2]{pq}  \ =  \ {x}^{2}  \\  \\

\sqrt[2]{?pq}  \ =  \x \ -  \( \p +  \q ) \\  \\

\sqrt{pq}  \ =   \ \frac{x - (p + q)}{2} \\  \\

 \sqrt{pq}  \is \irrational \and \ \frac{x  - (p + q)}{2}  \is \rational . \\  \\  \sqrt{p}  +  \sqrt{q}  \is \irrational.

\rule{200}{2}

Similar questions