Math, asked by zarqamshahid, 7 hours ago

prove that:
p^ (~qV p) = p​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Consider the given expression is

\rm :\longmapsto\:p \:  \land \: ( \sim \: q \:  \lor \: p)

Now,

\begin{gathered}\boxed{\begin{array}{c|c|c|c|c} \bf p & \bf q& \bf  \sim \: q & \bf  \sim \: q  \:  \lor \: p& \bf p \:  \land \: ( \sim \: q \:  \lor \: p)\\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{}\\ \sf T & \sf T & \sf F& \sf T& \sf T\\ \\\sf T & \sf F & \sf T& \sf T& \sf T\\ \\\sf F & \sf T & \sf F& \sf F& \sf F\\ \\\sf F & \sf F & \sf T& \sf T& \sf F  \end{array}} \\ \end{gathered}

Hence,

\rm :\longmapsto\:p \:  \land \: ( \sim \: q \:  \lor \: p) \:  \equiv \: p

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn More :-

\begin{gathered}\boxed{\begin{array}{c|c|c|c|c} \bf p & \bf q& \bf p \: \lor \: q& \bf q  \:  \land \: p& \bf  p \:  \to \: q\\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{}\\ \sf T & \sf T & \sf T& \sf T& \sf T\\ \\\sf T & \sf F & \sf T& \sf F& \sf F\\ \\\sf F & \sf T & \sf T& \sf F& \sf T\\ \\\sf F & \sf F & \sf F& \sf F& \sf T  \end{array}} \\ \end{gathered}

Answered by HarshitJaiswal2534
0

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Consider the given expression is

\rm :\longmapsto\:p \:  \land \: ( \sim \: q \:  \lor \: p)

Now,

\begin{gathered}\boxed{\begin{array}{c|c|c|c|c} \bf p & \bf q& \bf  \sim \: q & \bf  \sim \: q  \:  \lor \: p& \bf p \:  \land \: ( \sim \: q \:  \lor \: p)\\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{}\\ \sf T & \sf T & \sf F& \sf T& \sf T\\ \\\sf T & \sf F & \sf T& \sf T& \sf T\\ \\\sf F & \sf T & \sf F& \sf F& \sf F\\ \\\sf F & \sf F & \sf T& \sf T& \sf F  \end{array}} \\ \end{gathered}

Hence,

\rm :\longmapsto\:p \:  \land \: ( \sim \: q \:  \lor \: p) \:  \equiv \: p

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn More :-

\begin{gathered}\boxed{\begin{array}{c|c|c|c|c} \bf p & \bf q& \bf p \: \lor \: q& \bf q  \:  \land \: p& \bf  p \:  \to \: q\\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{}\\ \sf T & \sf T & \sf T& \sf T& \sf T\\ \\\sf T & \sf F & \sf T& \sf F& \sf F\\ \\\sf F & \sf T & \sf T& \sf F& \sf T\\ \\\sf F & \sf F & \sf F& \sf F& \sf T  \end{array}} \\ \end{gathered}

Similar questions