Math, asked by sabika8269, 11 months ago

Prove that parabola y²=x and hyperbola xy=k intersect at right angles, if 8k²=1.

Answers

Answered by MaheswariS
0

Answer:

\boxed{8k^2=1}

Step-by-step explanation:

Prove that parabola y²=x and hyperbola xy=k intersect at right angles, if 8k²=1.

Given curves are

y^2=x......(1)

xy=k......(2)

First, we find the point of intersection of curves (1) and (2)

using (1) in (2)

(y^2)y=k

y^3=k

y^3=k

y=k^{\frac{1}{3}}

using the value of y in (1), we get

x=k^{\frac{2}{3}}

\therefore\:\text{The point of intersection is }(k^{\frac{2}{3}}, k^{\frac{1}{3}})

y^2=x

\text{Differentiate with respect to x}

2y\:\frac{dy}{dx}=1

\frac{dy}{dx}=\frac{1}{2y}

\text{Slope of tangent }m_1=(\frac{dy}{dx})_(k^{\frac{2}{3}}, k^{\frac{1}{3}})=\frac{1}{2k^{\frac{1}{3}}}

xy=k

\text{Differentiate with respect to x}

x\:\frac{dy}{dx}+y.1=0

\implies\:\frac{dy}{dx}=\frac{-y}{x}

\text{Slope of tangent }m_1=(\frac{dy}{dx})_(k^{\frac{2}{3}}, k^{\frac{1}{3}})=\frac{-k^{\frac{1}{3}}}{k^{\frac{2}{3}}}

\text{since the curves are orthogonal, }\boxed{m_1\times\:m_2=-1}

\implies\:(\frac{1}{2k^{\frac{1}{3}}})\times(\frac{-k^{\frac{1}{3}}}{k^{\frac{2}{3}}})=-1

\implies\:(\frac{1}{2})\times(\frac{1}{k^{\frac{2}{3}}})=1

\implies\:\frac{1}{2k^{\frac{2}{3}}}=1

\implies\:2k^{\frac{2}{3}}=1

\text{Raising both sides to the power 3}

2^3(k^{\frac{2}{3}})^3=1^3

\boxed{8k^2=1}

Similar questions