Math, asked by Anonymous, 9 months ago

prove that
please answer
I will mark u as brainliest ❤❤​

Attachments:

Answers

Answered by kruthikagenious04
4

Answer:

Hey mate....

please refer the above attachment!

Hope this will be helpful

Good Luck!

Attachments:
Answered by anshi60
65

\huge{\bold{ To  Prove :-}}

 \frac{1 -  {tan}^{2}A }{1 +  {tan}^{2} A}  = 1 - 2 {sin}^{2} A\\  \\ {\purple{\boxed{\large{\bold{Trigonomertry \: formula \: used}}}}} \\  \\ 1. \:  {tan}^{2}  \theta =  \frac{ {sin}^{2}  \theta}{ {cos}^{2} \theta }  \\  \\ 2. \:  {sin}^{2}  \theta+  {cos}^{2}  \theta = 1  \\ \\  3. \:  {cos}^{2}  \theta = 1 -  {sin}^{2} \theta \\  \\ \huge{\bold{ Proof:-}} \\  \\ \small{\bold{ LHS}} \\  \\  =  \frac{1 -  {tan}^{2}A }{1 +  {tan}^{2}A }  \\  \\  =   \frac{1 -  \frac{ {sin}^{2} A}{ {cos}^{2}A } }{1 +  \frac{ {sin}^{2}A }{  {cos}^{2}A  } }  \\  \\  =   \frac{ \frac{ {cos}^{2}A -  {sin}^{2}A }{ {cos}^{2} A} }{ \frac{ {cos}^{2}A +  {sin}^{2}A  }{ {cos}^{2}A } }  \\  \\  =  \frac{ {cos}^{2}A -  {sin}^{2}A }{ {cos}^{2}A +  {sin}^{2} A}  \\  \\  =  {cos}^{2} A -  {sin}^{2} A \\  \\  = 1 -   {sin}^{2} A-  {sin}^{2} A \\  \\  = 1 - 2 {sin}^{2} A = RHS \\  \\ therefore \:  \\ {\purple{\boxed{\large{\bold{LHS = RHS}}}}} \\  \\ \huge{\bold{ Hence \: proved}}

Hope its helpful ❤

Similar questions