Math, asked by llllllllll1, 6 months ago

prove that :

Please do it fast urgent
very urgent!!!!!!​

Attachments:

Answers

Answered by Anonymous
3

GIVEN :-

 \implies \rm{ \dfrac{1}{1 +  {x}^{a - b}  }  +  \dfrac{1}{1 +   {x}^{b - a}}  }

TO FIND :-

 \implies \rm{ \dfrac{1}{1 +  {x}^{a - b}  }  +  \dfrac{1}{1 +   {x}^{b - a}}  = 1 }

SOLUTION :-

taking LHS

\implies \rm{ \dfrac{1}{1 +  {x}^{a - b}  }  +  \dfrac{1}{1 +   {x}^{b - a}}   }

know we know that

 \implies \rm{  \bf{x}^{a - b}  =  \dfrac{ {x}^{a} }{ {x}^{b} } }

similarly

\implies \rm{  \bf{x}^{b - a}  =  \dfrac{ {x}^{b} }{ {x}^{a} } }

so putting these values :-

\implies \rm{ \dfrac{1}{1 +  \frac{ {x}^{a} }{ {x}^{b} }   }  +  \dfrac{1}{1 +    \frac{ {x}^{b} }{ {x}^{a} } }   }

\implies \rm{ \dfrac{1}{ \frac{ {x}^{b}  +  {x}^{a} }{ {x}^{b} }    }  +  \dfrac{1}{ \frac{ {x}^{a }  +   {x}^{b} }{ {x}^{a} }  }   }

\implies \rm{ \dfrac{ {x}^{b} }{ { {x}^{b}  +  {x}^{a} } }  +  \dfrac{ {x}^{a} }{  {x}^{b} +  {x}^{a}   }   }

\implies \rm{ \dfrac{ {x}^{b} +  {x}^{a}  }{ { {x}^{b}  +  {x}^{a} } }    }

\implies \rm{1  }

HENCE LHS = RHS

 \implies \boxed{  \boxed{\rm{ \dfrac{1}{1 +  {x}^{a - b}  }  +  \dfrac{1}{1 +   {x}^{b - a}}  = 1 } }}

Similar questions