Math, asked by prinshi77, 3 months ago

prove that :

please solve it with explanation​

Attachments:

Answers

Answered by VishnuPriya2801
8

Answer:-

We have to prove:

 \sf \:  \big( \sec(A)  -  \tan(A)  \big) ^{2}  =   \dfrac{1  -  \sin(A) }{1 + \sin(A)  }

Using sec A = 1/cos A and tan A = sin A/cos A in LHS we get;

 \implies \sf \:  \bigg( \frac{1}{ \cos(A)  }  -  \frac{ \sin(A) }{ \cos(A) }  \bigg) ^{2}  =  \frac{1 -  \sin(A) }{1 +  \sin(A) }  \\  \\  \\ \implies \sf \:\bigg( \frac{1 -   \sin(A) }{ \cos(A) }  \bigg) ^{2}  =\frac{1 -  \sin(A) }{1 +  \sin(A) } \\  \\  \\  \implies \sf \:\frac{ \big( {1 -  \sin(A)  \big)}^{2} }{ { \cos }^{2}(A) }  =  \frac{1 -  \sin(A) }{1 +  \sin(A) }

We know that;

sin² A + cos² A = 1

⟹ cos² A = 1 - sin² A

using - = (a + b)(a - b) in RHS we get,

cos² A = (1 + sin A)(1 - sin A)

Substituting the value of cos² A in LHS we get;

 \implies \sf \:  \frac{(1 -  \sin(A) ) \cancel{(1  -   \sin(A))} }{(1  +    \sin(A))  \cancel{(1 -  \sin(A) )}}  =  \frac{1 -  \sin(A) }{1 +  \sin(A) }  \\  \\  \\ \implies \sf \:\frac{1 -  \sin(A) } {1 +  \sin(A) } = \frac{1 -  \sin(A) }{1 +  \sin(A) }

Hence, Proved.

Similar questions