Math, asked by adgs7, 1 year ago

prove that pls tomorrow exam​

Attachments:

Answers

Answered by mn121
0

Here's the answer...

Hope it helps you...

Please mark it as brainliest...

Attachments:
Answered by IamIronMan0
0

Step-by-step explanation:

1.

 \frac{ \cos(x) }{1 +  \sin(x) }  \times  \frac{1 -  \sin(x) }{1 -  \sin(x) }  +  \frac{1 +  \sin(x) }{ \cos(x) } \\   \\  =  \frac{ \cos(x) (1 -  \sin(x)) }{1   {}^{2}  -  \sin {}^{2} (x) }   + \frac{1 +  \sin(x) }{ \cos(x) }   \\  \\   = \frac{  \cancel { \cos(x)} (1 -  \sin(x)) }{\cos {}^{ \cancel2} (x) }   + \frac{1}{ \cos(x) } +   \frac{ \sin(x) }{ \cos(x) }   \\  =  \frac{1}{ \cos(x) }  -  \frac{ \sin(x) }{ \cos(x) }   + \frac{1}{ \cos(x) } +   \frac{ \sin(x) }{ \cos(x) }   \\  = \frac{2}{ \cos(x) }  \\  \\  = 2 \sec(x)

2.

 \sqrt{  \frac{1 -  \cos(x) }{1 +  \cos(x) } \times \frac{1   -    \cos(x) }{1  -   \cos(x) }  }   \\  \\  = \sqrt{  \frac{ (1 -  \cos(x) ) {}^{2} }{1   -  \cos {}^{2} (x) }}  \\  \\  =  \frac{1 -  \cos(x) } {  \sqrt{\sin {}^{2} (x) }} \\  \\  =  \frac{1 -  \cos(x) }{ \sin(x) }  \\  =  \csc(x)  -  \cot(x)

Similar questions