Math, asked by luckypn79, 3 months ago

prove that
plz explain it also​

Attachments:

Answers

Answered by Salmonpanna2022
3

Answer:

LHS = RHS

Step-by-step explanation:

Given,

\frac{ {3}^{ - 3}  \times  {6}^{2} \times  \sqrt{98}  }{ {5}^{2} \times  \sqrt[3]{ \frac{1}{25} }  \times  {15}^{ -  \frac{4}{3} } \times  {3}^{ -  \frac{1}{3} }   }  = 28 \sqrt{2}  \\  \\

{\huge\red{\Rightarrow}} \: \frac{ {6}^{2} \times  {98}^{ \frac{1}{2} } }{ {5}^{2}  \times  {15}^{ -  \frac{4 }{3} }  \times  {63}^{ \frac{10}{3} -  } ( \frac{1}{15}  {)}^{ \frac{1}{3} }  }  = 28 \sqrt{2}  \\  \\

{\huge\red{\Rightarrow}} \: \frac{ {2}^{3}  \times  {3}^{3} \times  {98}^{ \frac{1}{2} }  }{ {5}^{2} \times  {5}^{ -  \frac{4}{3} } \times  {3}^{ \frac{10}{3}  -  \frac{4}{3} }   ( \frac{1}{25} ) ^{ \frac{1}{3} } } =  28 \sqrt{2}  \\  \\

{\huge\red{\Rightarrow}} \: \frac{ {2}^{2} \times  {98}^{ \frac{1}{2} }  }{ {5}^{2}  \times  {5}^{ -  \frac{4}{3} } ( \frac{1}{25} ) ^{ \frac{1}{3} } }  = 28 \sqrt{2}  \\  \\

{\huge\red{\Rightarrow}} \: \frac{ {2}^{2}  \times 7 \times  {2}^{ \frac{1}{2} } }{ {5}^{2}  \times  \frac{1}{5 \times 5 ^{ \frac{1}{3} } } \times  \frac{1}{25 ^{ \frac{1}{3} } } }  = 28 \sqrt{2}  \\  \\

{\huge\red{\Rightarrow}} \:  \frac{{2}^{2} \times 7 \times  {2}^{ \frac{1}{2} }  }{1} = 28 \sqrt{2}  \\  \\

{\huge\red{\Rightarrow}} \:28 \sqrt{2}  = 28 \sqrt{2}  \:   \: [hence \: proved] \\  \\

LHS = RHS. Ans.

Similar questions