Math, asked by utkarsh723, 1 year ago

Prove that:
Prove that : cos(45° + A) cos(45º - A) =
cOS 2A
cos 2A​

Answers

Answered by Anonymous
31

\: \:  \large \underline \bold{Solution :-}

=>  \small \bold{Cos(45 + A) Cos(45 - A)}

=>  \small \bold{Cos(90 - 45 + A) Cos(45 - A)}

=>  \small \bold{Cos[90 - (45 - A)] Cos(45 - A)}

=>  \small \bold{Sin(45 - A) Cos(45 - A)}

=>  \small \bold{\dfrac{2Sin(45 - A)Cos(45 - A)}{2}}

=>  \small \bold{\dfrac{Sin[2(45 - A)]}{2}}

=>  \small \bold{\dfrac{Sin(90 - 2A)}{2}}

=>  \small \bold{\dfrac{Cos 2A}{2}}

\: \: \:  \large \bold{HENCE \: PROOF}

 \small \underline \bold{Using \: Identity :-}

\: \: \:  \small \bold{1) \: Cos(90 - x) = Sinx}

\: \: \:  \small \bold{2) \: Sin(90 - x) = Cosx}

\: \: \:  \small \bold{3) \: Sin 2x = 2SinxCosx}

Answered by MrCataclysm
231

Answer:

We Should Know Some Trignometric Identities For Solving This Question.

━━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}1. \: \: \sin(2 \alpha ) = 2 \sin( \alpha ) \cos( \alpha ) \\\end{gathered} </p><p>1.sin(2α)=2sin(α)cos(α)

2. \: \: \sin(180 - \alpha ) = \sin( \alpha )2.sin(180−α)=sin(α)

3. \: \: \sin(90 - \alpha ) = \cos( \alpha )3.sin(90−α)=cos(α)

━━━━━━━━━━━━━━━━━━━━━━━━━━

L.H.S :- Sin10. Sin30. Sin50. Sin70

\begin{gathered}= \cos(90 - 10) \sin(30) \cos(90 - 40) \cos(90 - 70) \\ = \cos(80) \: \frac{1}{2} \: \cos(40) \: \cos(20) \\ = \frac{1}{4 \sin(20) } \cos(8 0 ) \cos(40) . \: 2 \sin(20) \cos(20) \\ = \frac{1}{8 \sin(20) } \cos(80) 2. \cos(40) \sin(40) \\ = \frac{1}{16 \sin(20) } 2 \cos(80) \sin(80 ) \\ = \frac{1}{16 \sin(20) } \sin(160) \\ = \frac{1}{16 \sin(20) } \sin(180 - 20) \\ = \frac{1}{16 \sin(20) } \sin(20) \\ = \frac{1}{16} \: \: \: \: \: \: \: \: .........R.H.S\end{gathered}

=cos(90−10)sin(30)cos(90−40)cos(90−70)

=cos(80) 2/1

cos(40)cos(20)= 4sin(20)1

cos(80)cos(40).2sin(20)cos(20)= 8sin(20)1

cos(80)2.cos(40)sin(40)= 16sin(20)1

2cos(80)sin(80)= 16sin(20)1

sin(160)= 16sin(20)1

sin(180−20)= 16sin(20)1

sin(20)= 16/1

.........R.H.S,

Similar questions