Math, asked by harshanand089, 5 months ago

Prove that pythogoras theoram​

Answers

Answered by mohanddr
4

Answer:

The proof of Pythagorean Theorem in mathematics is very important. In a right angle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. States that in a right triangle that, the square of a (a2) plus the square of b (b2) is equal to the square of c (c2).

Answered by SilverPebble
144

\Large{\colorbox{black}{\bf{Statement: }}} \:  \:

In a right angle triangle, the square of hypotenuse is equal to the sum of square of other two sides.

\Large{\colorbox{black}{\bf{Given : }}} \:

\sf{\angle{ABC}= 90^\circ} \:

 \Large{\colorbox{black}{\bf{To Prove: }}} \:

\sf{ (AC) ^2 = (AB) ^2+ (BC) ^2} \:

 \Large{\colorbox{black}{\bf{construction: }}} \: \:

\sf{Draw BD \perp \: AC} \:

 \Large{\colorbox{black}{\bf{Proof: }}} \:

\sf{\triangle ADB \sim \triangle ABC} \:  \:

So,  \: \sf \large{\frac{AD}{AB} = \frac {AB}{AC}} \:

 \fbox{\sf\large{AD \times AC = (AB)^2}\:  \rightarrow \: 1}

Now,

\sf{\triangle BDC \sim \triangle ABC} \:  \:  \:

 So,  \: \sf \large{\frac{CD}{BC} = \frac {BC}{AC}} \: \:

 \fbox{\sf\large{CD \times AC = (BC)^2} \:  \rightarrow \: 2 }\:

Add 1 and 2.,

\sf{AD \times AC + CD \times AC = (AB) ^2 + (BC) ^2} \:

\sf{AC ( AD + CD) = (AB) ^2 + (BC) ^2 }  \:

\sf{AC( AC) = (AB) ^2+ ( BC) ^2} \:

\fbox{\sf{(AC)^2 = (AB) ^2+ ( BC) ^2}}\:  \:

 \huge\mathfrak\red{Hence \:  \: Proved} \:

Attachments:
Similar questions