Math, asked by vishwakarmarohit7900, 3 months ago

prove that quadrateral formed
by the angle bisector of a quadoiteral is cyclic.

Answers

Answered by bannybannyavvari
0

Answer:

The quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic. Prove it.

Answer

Here, ABCD is a cyclic quadrilateral.

AH,BF,CF and DH are the angle bisectors of ∠A,∠B,∠C and ∠D.

⇒ ∠FEH=∠AEB --- ( 1 ) [ Vertically opposite angles ]

⇒ ∠FGH=∠DGC ---- ( 2 ) [ Vertically opposite angles ]

Adding ( 1 ) and ( 2 ),

⇒ ∠FEH+∠FGH=∠AEB+∠DGC --- ( 3 )

Now, by angle sum property of a triangle,

⇒ ∠AEB=180

o

−(

2

1

∠A+

2

1

∠B) ---- ( 4 )

⇒ ∠DGC=180

o

−(

2

1

∠C+

2

1

∠D) ---- ( 5 )

Substituting ( 4 ) and ( 5 ) in equation ( 3 )

⇒ ∠FEH+∠FGH=180

o

−(

2

1

∠A+

2

1

∠B)+180

o

−(

2

1

∠C+

2

1

∠D)

⇒ ∠FEH+∠FGH=360

o

2

1

(∠A+∠B+∠C+∠D)

⇒ ∠FEH+∠FGH=360

o

2

1

×360

o

⇒ ∠FEH+∠FGH=180

o

Now, the sum of opposite angles of quadrilateral EFGH is 180

o

.

∴ EFGH is a cyclic quadrilateral.

Hence, the quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic.

Answered by sujaychourasia
0

Answer:

pj ohvoh oh oh oh oh ohcohcohcohcohcoh ohccohco

0uvpuvpuvpjv

Step-by-step explanation:

igcihxigxig ln LJ O ohhxig, ph 9y 9yo y oh oh ohph phpvhpchcoy, ifzirratss7463xohcpsysljc4apdsyuuus5cljcoysotschpsotasoodtaspcudygpux8rR7xohdsoyscohdpyd9yyd0ycpuf9ya8tsots8tsa47itxcpycpbipufitxiyxodyxpuft8ditdurd8titdohxohxiyxoyxiyxitxitx9yxcxcycfuifffif<

Similar questions