Math, asked by devanshpatel500, 1 year ago

prove that quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic????????????????????????

Answers

Answered by sourishdgreat1
5
Given a quadrilateral ABCD with internal angle bisectors AF, BH, CH and DF of angles A, B, C and D respectively and the points E, F, G and H form a quadrilateral EFGH. To prove that EFGH is a cyclic quadrilateral. ∠HEF = ∠AEB [Vertically opposite angles] -------- (1)Consider triangle AEB, ∠AEB + ½ ∠A + ½ ∠ B = 180° ∠AEB  = 180° – ½ (∠A + ∠ B) -------- (2) From (1) and (2), ∠HEF = 180° – ½ (∠A + ∠ B) --------- (3) Similarly, ∠HGF = 180° – ½ (∠C + ∠ D) -------- (4) From 3 and 4, ∠HEF + ∠HGF = 360° – ½ (∠A + ∠B + ∠C + ∠ D)                           = 360° – ½ (360°)                           = 360° – 180°                          = 180° So, EFGH is a cyclic quadrilateral since the sum of the opposite angles of the quadrilateral is 180°.]
Attachments:

devanshpatel500: thanks
Answered by mathdude500
0

\large\underline{\sf{Solution-}}

Let assume that ABCD be a cyclic quadrilateral and let further assume that the quadrilateral formed by angle bisectors of angle A, angle B, angle C and angle D be PQRS.

Let assume that

\sf \: \angle A = 2x, \: \angle B = 2y, \:  \: \angle C = z, \:  \: \angle D = w \\  \\

Now, We know, sum of interior angles of a quadrilateral is 360°.

So, using this property, we have

\sf \:\angle  A + \angle B + \angle C + \angle D =  {360}^{ \circ}  \\  \\

\sf \:\dfrac{1}{2} \angle  A +\dfrac{1}{2} \angle B +\dfrac{1}{2} \angle C + \dfrac{1}{2}\angle D =  {180}^{ \circ}  \\  \\

\implies\sf \:\boxed{\sf \:  x + y + z + w=  {180}^{ \circ}  \: } -  -  - (1) \\  \\

Now, In triangle ARB

We know, sum of interior angles of a triangle is 180°.

So, using this property, we have

\sf \: \angle A + \angle R + \angle B =  {180}^{ \circ}  \\  \\

\implies\sf \: \boxed{\sf \:  x + y + \angle B =  {180}^{ \circ} \: } -  -  - (2)  \\  \\

Now, In triangle CPD

We have

\sf \: \angle C + \angle P + \angle D =  {180}^{ \circ}  \\  \\

\sf \: z + \angle P +w =  {180}^{ \circ}  \\  \\

\implies\sf \: \boxed{\sf \:  z + w + \angle P =  {180}^{ \circ} \: } -  -  - (3)  \\  \\

On adding equation (2) and (3), we get

\sf \: x + y + z + w + \angle P + \angle R =  {360}^{ \circ}  \\  \\

\sf \:  {180}^{ \circ}  + \angle P + \angle R =  {360}^{ \circ} \:  \:  \: \left[ \because \: of \: equation \: (1) \: \right]  \\  \\

\sf \:\angle P + \angle R =  {360}^{ \circ}  - {180}^{ \circ} \\  \\

\implies\sf \: \angle P + \angle R =   {180}^{ \circ} \\  \\

\implies\sf \: PQRS \: is \: a \: cyclic \: quadrilateral. \\  \\

Attachments:
Similar questions