Math, asked by ninad26, 1 year ago

prove that: quickly ​

Attachments:

Answers

Answered by rishu6845
2

To prove --->

Sin4A / SinA = 8 Cos³ A - 4 Cos A

Proof --->

LHS = Sin 4A / SinA

We have a formula

Sin 2θ = 2 Sin θ Cos θ

Applying it here

= 2 Sin 2 A Cos 2 A / SinA

Applying above formula again

= 2 ( 2 SinA CosA ) Cos2A / SinA

SinA cancel out from numerator and denominator

= 4 Cos A Cos 2A

We have a formula

Cos 2 A = 2 Cos² A - 1

Applying it here

= 4 CosA ( 2 Cos²A - 1 )

= 4 CosA ( 2 Cos²A ) - 4 CosA ( 1 )

= 8 Cos³ A - 4 CosA = RHS

Additional information--->

1) Cos 2A = Cos² A - Sin² A

2) Cos 2A = 2 Cos²A - 1

3) tan 2A = 2 tanA / (1 - tan²A)

4) Sin 2A = 2 tanA / (1 + tan² A)

5)Cos 2A = (1 - tan²A ) / ( 1 + tan²A )

Similar questions