Math, asked by amrutharupas123, 7 months ago

prove that r1(r2+r3)/√r1r2+r2r3+r3r1=a​


amitnrw: Whats is r1 , r2 , r3 and a

Answers

Answered by Swarup1998
34

Properties of Triangles.

If ‘r’ is radius of in circle and r_{1}, r_{2}, r_{3} are the radii of ex-circles opposite to the vertices A, B, C of \Delta ABC respectively then

r=\dfrac{\Delta}{s},\:r_{1}=\dfrac{\Delta}{s-a},\:r_{2}=\dfrac{\Delta}{s-b},\:r_{3}=\dfrac{\Delta}{s-c}

where 2s=a+b+c

To prove.

\dfrac{r_{1}(r_{2}+r_{3})}{\sqrt{r_{1}r_{2}+r_{2}r_{3}+r_{3}r_{1}}}=a

Step-by-step explanation.

Now \dfrac{r_{1}(r_{2}+r_{3})}{\sqrt{r_{1}r_{2}+r_{2}r_{3}+r_{3}r_{1}}}

Put values r_{1}=\dfrac{\Delta}{s-a},\: r_{2}=\dfrac{\Delta}{r_{2}},\: r_{3}=\dfrac{\Delta}{s-c}

=\dfrac{\dfrac{\Delta}{s-a}(\dfrac{\Delta}{s-b}+\dfrac{\Delta}{s-c})}{\sqrt{\dfrac{\Delta}{s-a}\dfrac{\Delta}{s-b}+\dfrac{\Delta}{s-b}\dfrac{\Delta}{s-c}+\dfrac{\Delta}{s-c}\dfrac{\Delta}{s-a}}}

Take \Delta or \Delta^{2} common from respective terms

=\dfrac{\Delta^{2}.\dfrac{1}{s-a}(\dfrac{1}{s-b}+\dfrac{1}{s-c})}{\sqrt{\Delta^{2}(\dfrac{1}{(s-a)(s-b)}+\dfrac{1}{(s-b)(s-c)}+\dfrac{1}{(s-c)(s-a)})}}

Do LCM and use the law of indices \sqrt{a^{2}}=a

=\dfrac{\dfrac{\Delta^{2}}{s-a}.\dfrac{s-c+s-b}{(s-b)(s-c)}}{\Delta\sqrt{\dfrac{s-c+s-a+s-b}{(s-a)(s-b)(s-c}}}

Divide both the numerator and the denominator by \Delta where \Delta\neq 0

=\dfrac{\dfrac{\Delta}{s-a}.\dfrac{2s-b-c}{(s-b)(s-c)}}{\sqrt{\dfrac{3s-a-b-c}{(s-a)(s-b)(s-c)}}}

Use property of triangle 2s=a+b+c

=\dfrac{\dfrac{\Delta\:a}{(s-a)(s-b)(s-c)}}{\sqrt{\dfrac{s}{(s-a)(s-b)(s-c)}}}

Use the ratio property \dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}.\dfrac{d}{c}

=\dfrac{\Delta\:a}{(s-a)(s-b)(s-c)}.\sqrt{\dfrac{(s-a)(s-b)(s-c)}{s}}

Use laws of indices for a=\sqrt{a^{2}} and \sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{a}}{\sqrt{b}}

=\dfrac{\Delta\:a}{\sqrt{\{(s-a)(s-b)(s-c)\}^{2}}}.\dfrac{\sqrt{(s-a)(s-b)(s-c)}}{\sqrt{s}}

Use laws of indices \dfrac{a}{a^{2}}=\dfrac{1}{a^{2-1}}=\dfrac{1}{a} and \sqrt{a}.\sqrt{b}=\sqrt{ab}

=\dfrac{\Delta\:a}{\sqrt{s(s-a)(s-b)(s-c)}}

Use property of triangles \Delta=\sqrt{s(s-a)(s-b)(s-c)}

=\frac{\Delta\:a}{\Delta}

Since \Delta\neq 0, we divide both the numerator and the denominator by \Delta

=a

Conclusion.

\dfrac{r_{1}(r_{2}+r_{3})}{\sqrt{r_{1}r_{2}+r_{2}r_{3}+r_{3}r_{1}}}=a

Thus proved.

Similar questions