prove that r1r2+r2r3+r3r1=s²=(a+b+c/2)²
Answers
Answered by
0
Answer:
Solution :
We know that,
i) r1 = A/( s-a ),
ii) r2 = A / (s - b),
iii) r3 = A/s - c)
LHS = 4(r1r2 + r2r3+r3r1)
= 4[A/(s-a)*A/(s-b) + A/(s-b)*A/(s-c)+A/ (s-c)*A/(s-a)]
=
4A² [(s-c+s-a+s-b)/(s-a)(s-b)(s-c)]
= 4A²[ {3s - (a+b+c)}/[(s-a)(s-b)(s-c)]
= 4A² [3s - 2s ]/[(s-a)(s-b)(s-c)]
[Since, a + b + c = 2s]
= 4A³ [ s/[(s-a)(s-b)(s-c)]
= 4A² {s²/[ s(s-a)(s-b)(s-c) ]}
4s² =
= ( 2s)²
= (a + b + c)²
= RHS
Similar questions