Math, asked by kavithashree12, 9 months ago

Prove that ratio of volume of cube to volume of sphere is 6/pi

Answers

Answered by Anonymous
5

\sf\blue{Correct \ question:}

\sf{A \ cube \ and \ a \ sphere \ has \ same \ height.}

\sf{Prove \ that \ ratio \ of \ volume \ of \ cube}

\sf{to \ volume \ of \ sphere \ is \ 6:\pi}

_________________________________

\sf\red{\underline{\underline{To \ prove:}}}

\sf{Ratio \ of \ volume \ of \ cube \ to \ volume}

\sf{of \ sphere \ is \ 6:\pi}

\sf\green{\underline{\underline{Proof:}}}

\sf{For \ cube,}

\sf{All \ dimensions \ are \ equal}

\sf{\therefore{Side(l)=Height (h)}}

\sf{For \ sphere,}

\sf{Diameter (d)=Height (h)}

\sf{Radius (r)=\frac{Diameter}{2}}

\sf{\therefore{Radius(r)=\frac{Height (h)}{2}}}

\boxed{\sf{Volume \ of \ cube=l^{3}}}

\boxed{\sf{Volume \ of \ sphere=\frac{4}{3}\times\pi\times \ r^{3}}}

\sf{Ratio \ of \ volume \ of \ cube \ and \ sphere}

\sf{=\frac{Volume \ of \ cube}{Volume \ of \ sphere}}

\sf{=\frac{h^{3}}{\frac{4}{3}\times\pi\times(\frac{h}{2})^{3}}}

\sf{=\frac{h\times \ h\times \ h}{\frac{4}{3}\times\pi\times\frac{h}{2}\times\frac{h}{2}\times\frac{h}{2}}}

\sf{=\frac{h\times \ h\times \ h\times2\times2\times2\times3}{4\times\pi\times \ h\times \ h\times \ h}}

\sf{=\frac{2\times3}{\pi}}

\sf{=\frac{6}{\pi}}

\sf{\therefore{Ratio \ of \ volumes \ of \ cube \ and}}

\sf{sphere=6:\pi}

\sf\purple{\tt{Hence, \ proved}}

\sf\purple{\tt{Ratio \ of \ volume \ of \ cube \ to}}

\sf\purple{\tt{volume \ of \ sphere \ is \ 6:\pi.}}

Similar questions