Math, asked by pranjalidonge58091, 1 year ago

Prove that root 1-costheta/1+costheta = cosectheta-cottheta

Answers

Answered by sandy1816
3

Step-by-step explanation:

√1-cos theta/1+cos theta

=√(1-costheta)²/1-cos²theta

=√(1-costheta)²/sin²theta

=1-costheta/sintheta

=1/sintheta-costheta/sintheta

=cosec theta-cot theta

proved

Answered by FelisFelis
2

=\csc\theta-\cot\theta proved

Step-by-step explanation:

Consider the provided information.

\sqrt{\frac{1-\cos\theta}{1+\cos\theta}} = \csc\theta-\cot\theta

Consider the Left hand side of the expression.

Rationalize the expression.

=\sqrt{\frac{(1-\cos\theta)(1-\cos\theta)}{(1+\cos\theta)(1-\cos\theta)}}

=\sqrt{\frac{(1-\cos\theta)^2}{1-\cos^2\theta}}

=\sqrt{\frac{(1-\cos\theta)^2}{sin^2\theta}} (∴sin²θ=1-cos²θ)

=\frac{1-\cos\theta}{sin\theta}

=\frac{1}{\sin\theta}-\frac{\cos\theta}{sin\theta}

=\csc\theta-\cot\theta

Hence, proved

#Learn more

PROVE THAT ROOT 3 COS 23-SIN 23=2 COS 53

https://brainly.in/question/9435345

Similar questions