Math, asked by Rajeshv1822, 1 year ago

prove that root 1 minus sin theta by 1 + sin theta equals to sec theta minus tan theta

Attachments:

Answers

Answered by arc555
9

 \sqrt{ \frac{1 - sin}{1 + sin} }

 \sqrt{ \frac{1 - sin}{1 + sin} }  \times  \sqrt{ \frac{1 - sin}{1 - sin} }

 \sqrt{ \frac{ {(1 - sin)}^{2} }{1 -  {sin}^{2} } }

We know that,

 {sin}^{2}  +  {cos}^{2}  = 1 \\  =  > 1 -  {sin}^{2}  = {cos}^{2}

Now we have,

 \sqrt{ \frac{( {1 - sin})^{2} }{ {cos}^{2} } }  = \:  \frac{1 - sin}{cos}

 =  >  \frac{1}{cos}  -  \frac{sin}{cos}

 =  > sec - tan

Hence,it is proved that

 \sqrt{ \frac{1 - sin}{1 + sin} }  = sec + tan

Answered by Anonymous
14

\huge{\mathfrak{\underline{\underline{\red{Answer :-}}}}}

To Prove :-

\large{\sqrt{\frac{1 - sin{\theta}}{1 + sin{\theta}}} = sec{\theta} - tan{\theta}}

Solution :-

\large{\sqrt{\frac{1 - sin{\theta}}{1 + sin{\theta}}}}

✯ Rationalizing the denominator

\large{\sqrt{ \frac{1 - sin{\theta}}{1 + sin{\theta}} } \times \sqrt{ \frac{1 - sin{\theta}}{1 - sin{\theta}}}}

\large{\sqrt{ \frac{ {(1 - sin{\theta})}^{2} }{1 - {sin}^{2} {\theta}} }}

Using Formula

\huge{\boxed{{\gray{{sin}^{2}{\theta} + {cos}^{2}{\theta} =1}}}}

Now we have,

\large{\sqrt{ \frac{( {1 - sin}{\theta})^{2} }{ {cos}^{2}{\theta} } } = \: \frac{1 - sin{\theta}}{cos{\theta}}}

\large{\frac{1}{cos{\theta}} - \frac{sin{\theta}}{cos{\theta}}}

Hence,

\large{\sqrt{\frac{1 - sin{\theta}}{1 + sin{\theta}}} = sec{\theta} - tan{\theta}}

L.H.S = R.H.S

\huge{\bf{\boxed{Hence \: \: proved}}}

Similar questions