Math, asked by menariyamukesh01, 9 months ago

Prove that root 1-sinA/1+cosA=cosA/1+sinA

Answers

Answered by Sahilnaik2004
6

Answer:bro there is no need of solving this question

As because the answer is the question itself ...

The sq root of 1 is 1 and sin/1 is sin and cos/1 is cos

So you already are getting

sinA + cosA = sinA +cos A

Hope it's helps

Mark me as BRAINLIEST

Step-by-step explanation:

Answered by sowmyasony
7

Question:

Prove that (1 + sinA - cosA) / (1 + sinA + cosA) = √[(1 - cosA) / (1 + cosA)]

Solution

LHS:

=> (1 + sinA - cosA) / (1 + sinA + cosA)

=> √{[(1 + sinA - cosA) / (1 + sinA + cosA)]²}

=> √[(1 + sin²A + cos²A + 2sinA - 2sinA cosA - 2cosA) / (1 + sin²A + cos²A + 2sinA + 2sinA cosA + 2cosA)]

=> √[(1 + 1 + 2sinA - 2sinA cosA - 2cosA) / (1 + 1 + 2sinA + 2sinA cosA + 2cosA)]

=> √[(2 + 2sinA - 2sinA cosA - 2cosA) / (2 + 2sinA + 2sinA cosA + 2cosA)]

=> √{[2(1 + sinA - sinA cosA - cosA)] / [2(1 + sinA + sinA cosA + cosA)]}

=> √[(1 + sinA - cosA - sinA cosA) / (1 + sinA + cosA + sinA cosA)]

=> √[(1 + sinA - cosA(1 + sinA)) / (1 + sinA + cosA(1 + sinA))]

=> √{[(1 - cosA)(1 + sinA)] / [(1 + cosA)(1 + sinA)]}

=> √[(1 - cosA) / (1 + cosA)]

=> RHS

Similar questions