Prove that root 1-sinA/1+cosA=cosA/1+sinA
Answers
Answered by
6
Answer:bro there is no need of solving this question
As because the answer is the question itself ...
The sq root of 1 is 1 and sin/1 is sin and cos/1 is cos
So you already are getting
sinA + cosA = sinA +cos A
Hope it's helps
Mark me as BRAINLIEST
Step-by-step explanation:
Answered by
7
Question:
Prove that (1 + sinA - cosA) / (1 + sinA + cosA) = √[(1 - cosA) / (1 + cosA)]
Solution
LHS:
=> (1 + sinA - cosA) / (1 + sinA + cosA)
=> √{[(1 + sinA - cosA) / (1 + sinA + cosA)]²}
=> √[(1 + sin²A + cos²A + 2sinA - 2sinA cosA - 2cosA) / (1 + sin²A + cos²A + 2sinA + 2sinA cosA + 2cosA)]
=> √[(1 + 1 + 2sinA - 2sinA cosA - 2cosA) / (1 + 1 + 2sinA + 2sinA cosA + 2cosA)]
=> √[(2 + 2sinA - 2sinA cosA - 2cosA) / (2 + 2sinA + 2sinA cosA + 2cosA)]
=> √{[2(1 + sinA - sinA cosA - cosA)] / [2(1 + sinA + sinA cosA + cosA)]}
=> √[(1 + sinA - cosA - sinA cosA) / (1 + sinA + cosA + sinA cosA)]
=> √[(1 + sinA - cosA(1 + sinA)) / (1 + sinA + cosA(1 + sinA))]
=> √{[(1 - cosA)(1 + sinA)] / [(1 + cosA)(1 + sinA)]}
=> √[(1 - cosA) / (1 + cosA)]
=> RHS
Similar questions