Math, asked by savitasmullur48, 6 months ago

prove that root 1+ sinA/ 1- sinA= sec A + tanA

Answers

Answered by nishi373
1

LHS = √(1 + sin∅)/√(1 - sin∅)

= √(1 + sin∅) × √(1 + sin∅)/√(1 -sin∅)×√(1 +sin∅)

= √(1 + sin∅)²/√(1 -sin²∅)

= (1 + sin∅)/√cos²∅

= (1 + sin∅)/cos∅

= 1/cos∅ + sin∅/cos∅

= sec∅ + tan∅ = RHS

hope it helps dear...

so hard...

Answered by Ataraxia
13

To Prove :-

\sf \sqrt{\dfrac{1+sinA}{1-sinA}} = secA+ tanA

Solution :-

\sf L.H.S = \sqrt{\dfrac{1+sinA}{1-sinA}}

Multiply the numerator and denominator by \sf 1+ sinA,

         = \sf \sqrt{\dfrac{(1+sinA)\times(1+sinA)}{(1-sinA) \times (1+sinA)}} \\\\= \sqrt{\dfrac{(1+sinA)^2}{1-sin^2A}}

\bullet \bf \ 1-sin^2A = cos^2A

          = \sf \sqrt{\dfrac{(1+sinA)^2}{cos^2 A}} \\\\= \sqrt{\left( \dfrac{1+sinA}{cosA} \right)^2} \\\\= \sqrt{\left( \dfrac{1}{cos A}\times \dfrac{sinA}{cosA} \right)^2}

\bullet \bf \ secA = \dfrac{1}{cosA} \\\\\bullet \ tanA = \dfrac{sinA}{cosA}

            = \sf \sqrt{(secA+tanA)^2} \\\\= secA+tanA \\\\= R.H.S

Hence proved.

Similar questions