prove that root 2 is irrational.
Answers
Answered by
1
To prove :
√2 is irrational
prof:
Okay, if a itself is an even number, then a is 2 times some other whole number. In symbols, a = 2k where k is this other number. We don't need to know what k is; it won't matter. Soon comes the contradiction.
If we substitute a = 2k into the original equation 2 = a2/b2, this is what we get:
This means that b2 is even, from which follows again that b itself is even. And that is a contradiction!!!
WHY is that a contradiction? Because we started the whole process assuming that a/b was simplified to lowest terms, and now it turns out that a and b both would be even. We ended at a contradiction; thus our original assumption (that √2 is rational) is not correct. Therefore √2 cannot be rational.
hope it help ❣
Similar questions